James McCool
commited on
Commit
·
46ed57c
1
Parent(s):
33016ba
Enhance app.py: Added auxiliary seed frame functions for Draftkings and Fanduel, updated data handling for secondary and auxiliary slates, and modified UI options for slate selection.
Browse files
app.py
CHANGED
@@ -66,9 +66,31 @@ def init_DK_secondary_seed_frames(sharp_split):
|
|
66 |
dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
|
67 |
# Map names
|
68 |
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
DK_seed = raw_display.to_numpy()
|
73 |
|
74 |
return DK_seed
|
@@ -91,12 +113,9 @@ def init_FD_seed_frames(sharp_split):
|
|
91 |
|
92 |
raw_display = pd.DataFrame(list(cursor))
|
93 |
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
94 |
-
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
|
95 |
# Map names
|
96 |
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
97 |
-
|
98 |
-
# Remove any remaining NaN values
|
99 |
-
raw_display = raw_display.dropna()
|
100 |
FD_seed = raw_display.to_numpy()
|
101 |
|
102 |
return FD_seed
|
@@ -119,12 +138,34 @@ def init_FD_secondary_seed_frames(sharp_split):
|
|
119 |
|
120 |
raw_display = pd.DataFrame(list(cursor))
|
121 |
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
122 |
-
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
# Map names
|
124 |
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
125 |
-
|
126 |
-
# Remove any remaining NaN values
|
127 |
-
raw_display = raw_display.dropna()
|
128 |
FD_seed = raw_display.to_numpy()
|
129 |
|
130 |
return FD_seed
|
@@ -164,9 +205,21 @@ def init_baselines():
|
|
164 |
fd_secondary = fd_secondary_roo_raw.dropna(subset=['Median'])
|
165 |
fd_secondary = fd_secondary.rename(columns={'Own%': 'Own'})
|
166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
teams_playing_count = len(dk_raw.Team.unique())
|
168 |
|
169 |
-
return dk_raw, fd_raw, dk_secondary, fd_secondary, teams_playing_count
|
170 |
|
171 |
@st.cache_data
|
172 |
def validate_lineup_players(df, valid_players, player_columns):
|
@@ -247,7 +300,7 @@ def sim_contest(Sim_size, seed_frame, maps_dict, Contest_Size, teams_playing_cou
|
|
247 |
|
248 |
return Sim_Winners
|
249 |
|
250 |
-
dk_raw, fd_raw, dk_secondary, fd_secondary, teams_playing_count = init_baselines()
|
251 |
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
252 |
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
253 |
|
@@ -261,11 +314,11 @@ with tab1:
|
|
261 |
del st.session_state[key]
|
262 |
DK_seed = init_DK_seed_frames(10000)
|
263 |
FD_seed = init_FD_seed_frames(10000)
|
264 |
-
dk_raw, fd_raw, dk_secondary, fd_secondary, teams_playing_count = init_baselines()
|
265 |
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
266 |
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
267 |
|
268 |
-
sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', '
|
269 |
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
|
270 |
|
271 |
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
|
@@ -334,12 +387,34 @@ with tab1:
|
|
334 |
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
335 |
raw_baselines = dk_raw
|
336 |
column_names = dk_columns
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
elif sim_site_var1 == 'Fanduel':
|
338 |
if sim_slate_var1 == 'Main Slate':
|
339 |
st.session_state.working_seed = init_FD_seed_frames(sharp_split)
|
340 |
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
341 |
raw_baselines = fd_raw
|
342 |
column_names = fd_columns
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
343 |
|
344 |
st.session_state.maps_dict = {
|
345 |
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
@@ -370,7 +445,7 @@ with tab1:
|
|
370 |
|
371 |
# Data Copying
|
372 |
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
373 |
-
for col in st.session_state.Sim_Winner_Export.iloc[:, 0:
|
374 |
st.session_state.Sim_Winner_Export[col] = st.session_state.Sim_Winner_Export[col].map(dk_id_dict)
|
375 |
st.session_state.Sim_Winner_Export = st.session_state.Sim_Winner_Export.drop_duplicates(subset=['Team', 'Secondary', 'salary', 'unique_id'])
|
376 |
|
@@ -598,7 +673,7 @@ with tab2:
|
|
598 |
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
599 |
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
600 |
|
601 |
-
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate'))
|
602 |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
603 |
sharp_split_var = st.number_input("How many lineups do you want?", value=10000, max_value=500000, min_value=10000, step=10000)
|
604 |
lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=500, value=10, step=1)
|
@@ -658,10 +733,17 @@ with tab2:
|
|
658 |
elif slate_var1 == 'Secondary Slate':
|
659 |
st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split_var)
|
660 |
|
661 |
-
dk_id_dict = dict(zip(
|
662 |
-
raw_baselines =
|
|
|
|
|
|
|
|
|
|
|
|
|
663 |
column_names = dk_columns
|
664 |
|
|
|
665 |
elif site_var1 == 'Fanduel':
|
666 |
if slate_var1 == 'Main Slate':
|
667 |
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
|
@@ -672,8 +754,14 @@ with tab2:
|
|
672 |
elif slate_var1 == 'Secondary Slate':
|
673 |
st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split_var)
|
674 |
|
675 |
-
fd_id_dict = dict(zip(
|
676 |
-
raw_baselines =
|
|
|
|
|
|
|
|
|
|
|
|
|
677 |
column_names = fd_columns
|
678 |
if site_var1 == 'Draftkings':
|
679 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], team_var2)]
|
@@ -709,7 +797,19 @@ with tab2:
|
|
709 |
|
710 |
raw_baselines = dk_raw
|
711 |
column_names = dk_columns
|
712 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
713 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], team_var2)]
|
714 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 13], stack_var2)]
|
715 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
@@ -726,6 +826,18 @@ with tab2:
|
|
726 |
|
727 |
raw_baselines = fd_raw
|
728 |
column_names = fd_columns
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
729 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
730 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
731 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
|
|
66 |
dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
|
67 |
# Map names
|
68 |
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
69 |
+
DK_seed = raw_display.to_numpy()
|
70 |
+
|
71 |
+
return DK_seed
|
72 |
+
|
73 |
+
@st.cache_data(ttl = 60)
|
74 |
+
def init_DK_auxiliary_seed_frames(sharp_split):
|
75 |
|
76 |
+
collection = db['DK_MLB_turbo_name_map']
|
77 |
+
cursor = collection.find()
|
78 |
+
raw_data = pd.DataFrame(list(cursor))
|
79 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
80 |
+
|
81 |
+
# Get the valid players from the Range of Outcomes collection
|
82 |
+
collection = db["Player_Range_Of_Outcomes"]
|
83 |
+
cursor = collection.find({"Site": "Draftkings", "Slate": "turbo_slate"})
|
84 |
+
valid_players = set(pd.DataFrame(list(cursor))['Player'].unique())
|
85 |
+
|
86 |
+
collection = db["DK_MLB_turbo_seed_frame"]
|
87 |
+
cursor = collection.find().limit(sharp_split)
|
88 |
+
|
89 |
+
raw_display = pd.DataFrame(list(cursor))
|
90 |
+
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
91 |
+
dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
|
92 |
+
# Map names
|
93 |
+
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
94 |
DK_seed = raw_display.to_numpy()
|
95 |
|
96 |
return DK_seed
|
|
|
113 |
|
114 |
raw_display = pd.DataFrame(list(cursor))
|
115 |
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
116 |
+
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
|
117 |
# Map names
|
118 |
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
|
|
|
|
|
|
119 |
FD_seed = raw_display.to_numpy()
|
120 |
|
121 |
return FD_seed
|
|
|
138 |
|
139 |
raw_display = pd.DataFrame(list(cursor))
|
140 |
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
141 |
+
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
|
142 |
+
# Map names
|
143 |
+
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
144 |
+
FD_seed = raw_display.to_numpy()
|
145 |
+
|
146 |
+
return FD_seed
|
147 |
+
|
148 |
+
@st.cache_data(ttl = 60)
|
149 |
+
def init_FD_auxiliary_seed_frames(sharp_split):
|
150 |
+
|
151 |
+
collection = db['FD_MLB_turbo_name_map']
|
152 |
+
cursor = collection.find()
|
153 |
+
raw_data = pd.DataFrame(list(cursor))
|
154 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
155 |
+
|
156 |
+
# Get the valid players from the Range of Outcomes collection
|
157 |
+
collection = db["Player_Range_Of_Outcomes"]
|
158 |
+
cursor = collection.find({"Site": "Fanduel", "Slate": "turbo_slate"})
|
159 |
+
valid_players = set(pd.DataFrame(list(cursor))['Player'].unique())
|
160 |
+
|
161 |
+
collection = db["FD_MLB_turbo_seed_frame"]
|
162 |
+
cursor = collection.find().limit(sharp_split)
|
163 |
+
|
164 |
+
raw_display = pd.DataFrame(list(cursor))
|
165 |
+
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
166 |
+
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
|
167 |
# Map names
|
168 |
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
|
|
|
|
|
|
169 |
FD_seed = raw_display.to_numpy()
|
170 |
|
171 |
return FD_seed
|
|
|
205 |
fd_secondary = fd_secondary_roo_raw.dropna(subset=['Median'])
|
206 |
fd_secondary = fd_secondary.rename(columns={'Own%': 'Own'})
|
207 |
|
208 |
+
dk_auxiliary_roo_raw = load_display[load_display['Site'] == 'Draftkings']
|
209 |
+
dk_auxiliary_roo_raw = dk_auxiliary_roo_raw[dk_auxiliary_roo_raw['Slate'] == 'turbo_slate']
|
210 |
+
dk_auxiliary_roo_raw['STDev'] = dk_auxiliary_roo_raw['Median'] / 3
|
211 |
+
dk_auxiliary = dk_auxiliary_roo_raw.dropna(subset=['Median'])
|
212 |
+
dk_auxiliary = dk_auxiliary.rename(columns={'Own%': 'Own'})
|
213 |
+
|
214 |
+
fd_auxiliary_roo_raw = load_display[load_display['Site'] == 'Fanduel']
|
215 |
+
fd_auxiliary_roo_raw = fd_auxiliary_roo_raw[fd_auxiliary_roo_raw['Slate'] == 'turbo_slate']
|
216 |
+
fd_auxiliary_roo_raw['STDev'] = fd_auxiliary_roo_raw['Median'] / 3
|
217 |
+
fd_auxiliary = fd_auxiliary_roo_raw.dropna(subset=['Median'])
|
218 |
+
fd_auxiliary = fd_auxiliary.rename(columns={'Own%': 'Own'})
|
219 |
+
|
220 |
teams_playing_count = len(dk_raw.Team.unique())
|
221 |
|
222 |
+
return dk_raw, fd_raw, dk_secondary, fd_secondary, dk_auxiliary, fd_auxiliary, teams_playing_count
|
223 |
|
224 |
@st.cache_data
|
225 |
def validate_lineup_players(df, valid_players, player_columns):
|
|
|
300 |
|
301 |
return Sim_Winners
|
302 |
|
303 |
+
dk_raw, fd_raw, dk_secondary, fd_secondary, dk_auxiliary, fd_auxiliary, teams_playing_count = init_baselines()
|
304 |
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
305 |
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
306 |
|
|
|
314 |
del st.session_state[key]
|
315 |
DK_seed = init_DK_seed_frames(10000)
|
316 |
FD_seed = init_FD_seed_frames(10000)
|
317 |
+
dk_raw, fd_raw, dk_secondary, fd_secondary, dk_auxiliary, fd_auxiliary, teams_playing_count = init_baselines()
|
318 |
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
319 |
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
320 |
|
321 |
+
sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Auxiliary Slate'), key='sim_slate_var1')
|
322 |
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
|
323 |
|
324 |
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
|
|
|
387 |
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
388 |
raw_baselines = dk_raw
|
389 |
column_names = dk_columns
|
390 |
+
elif sim_slate_var1 == 'Secondary Slate':
|
391 |
+
st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split)
|
392 |
+
dk_id_dict = dict(zip(dk_secondary.Player, dk_secondary.player_id))
|
393 |
+
raw_baselines = dk_secondary
|
394 |
+
column_names = dk_columns
|
395 |
+
elif sim_slate_var1 == 'Auxiliary Slate':
|
396 |
+
st.session_state.working_seed = init_DK_auxiliary_seed_frames(sharp_split)
|
397 |
+
dk_id_dict = dict(zip(dk_auxiliary.Player, dk_auxiliary.player_id))
|
398 |
+
raw_baselines = dk_auxiliary
|
399 |
+
column_names = dk_columns
|
400 |
+
|
401 |
elif sim_site_var1 == 'Fanduel':
|
402 |
if sim_slate_var1 == 'Main Slate':
|
403 |
st.session_state.working_seed = init_FD_seed_frames(sharp_split)
|
404 |
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
405 |
raw_baselines = fd_raw
|
406 |
column_names = fd_columns
|
407 |
+
elif sim_slate_var1 == 'Secondary Slate':
|
408 |
+
st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split)
|
409 |
+
fd_id_dict = dict(zip(fd_secondary.Player, fd_secondary.player_id))
|
410 |
+
raw_baselines = fd_secondary
|
411 |
+
column_names = fd_columns
|
412 |
+
elif sim_slate_var1 == 'Auxiliary Slate':
|
413 |
+
st.session_state.working_seed = init_FD_auxiliary_seed_frames(sharp_split)
|
414 |
+
fd_id_dict = dict(zip(fd_auxiliary.Player, fd_auxiliary.player_id))
|
415 |
+
raw_baselines = fd_auxiliary
|
416 |
+
column_names = fd_columns
|
417 |
+
|
418 |
|
419 |
st.session_state.maps_dict = {
|
420 |
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
|
|
445 |
|
446 |
# Data Copying
|
447 |
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
448 |
+
for col in st.session_state.Sim_Winner_Export.iloc[:, 0:10].columns:
|
449 |
st.session_state.Sim_Winner_Export[col] = st.session_state.Sim_Winner_Export[col].map(dk_id_dict)
|
450 |
st.session_state.Sim_Winner_Export = st.session_state.Sim_Winner_Export.drop_duplicates(subset=['Team', 'Secondary', 'salary', 'unique_id'])
|
451 |
|
|
|
673 |
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
674 |
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
675 |
|
676 |
+
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Auxiliary Slate'))
|
677 |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
678 |
sharp_split_var = st.number_input("How many lineups do you want?", value=10000, max_value=500000, min_value=10000, step=10000)
|
679 |
lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=500, value=10, step=1)
|
|
|
733 |
elif slate_var1 == 'Secondary Slate':
|
734 |
st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split_var)
|
735 |
|
736 |
+
dk_id_dict = dict(zip(dk_secondary.Player, dk_secondary.player_id))
|
737 |
+
raw_baselines = dk_secondary
|
738 |
+
column_names = dk_columns
|
739 |
+
elif slate_var1 == 'Auxiliary Slate':
|
740 |
+
st.session_state.working_seed = init_DK_auxiliary_seed_frames(sharp_split_var)
|
741 |
+
|
742 |
+
dk_id_dict = dict(zip(dk_auxiliary.Player, dk_auxiliary.player_id))
|
743 |
+
raw_baselines = dk_auxiliary
|
744 |
column_names = dk_columns
|
745 |
|
746 |
+
|
747 |
elif site_var1 == 'Fanduel':
|
748 |
if slate_var1 == 'Main Slate':
|
749 |
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
|
|
|
754 |
elif slate_var1 == 'Secondary Slate':
|
755 |
st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split_var)
|
756 |
|
757 |
+
fd_id_dict = dict(zip(fd_secondary.Player, fd_secondary.player_id))
|
758 |
+
raw_baselines = fd_secondary
|
759 |
+
column_names = fd_columns
|
760 |
+
elif slate_var1 == 'Auxiliary Slate':
|
761 |
+
st.session_state.working_seed = init_FD_auxiliary_seed_frames(sharp_split_var)
|
762 |
+
|
763 |
+
fd_id_dict = dict(zip(fd_auxiliary.Player, fd_auxiliary.player_id))
|
764 |
+
raw_baselines = fd_auxiliary
|
765 |
column_names = fd_columns
|
766 |
if site_var1 == 'Draftkings':
|
767 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], team_var2)]
|
|
|
797 |
|
798 |
raw_baselines = dk_raw
|
799 |
column_names = dk_columns
|
800 |
+
elif slate_var1 == 'Secondary Slate':
|
801 |
+
st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split_var)
|
802 |
+
|
803 |
+
dk_id_dict = dict(zip(dk_secondary.Player, dk_secondary.player_id))
|
804 |
+
raw_baselines = dk_secondary
|
805 |
+
column_names = dk_columns
|
806 |
+
elif slate_var1 == 'Auxiliary Slate':
|
807 |
+
st.session_state.working_seed = init_DK_auxiliary_seed_frames(sharp_split_var)
|
808 |
+
|
809 |
+
dk_id_dict = dict(zip(dk_auxiliary.Player, dk_auxiliary.player_id))
|
810 |
+
raw_baselines = dk_auxiliary
|
811 |
+
column_names = dk_columns
|
812 |
+
|
813 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], team_var2)]
|
814 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 13], stack_var2)]
|
815 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
|
|
826 |
|
827 |
raw_baselines = fd_raw
|
828 |
column_names = fd_columns
|
829 |
+
elif slate_var1 == 'Secondary Slate':
|
830 |
+
st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split_var)
|
831 |
+
|
832 |
+
fd_id_dict = dict(zip(fd_secondary.Player, fd_secondary.player_id))
|
833 |
+
raw_baselines = fd_secondary
|
834 |
+
column_names = fd_columns
|
835 |
+
elif slate_var1 == 'Auxiliary Slate':
|
836 |
+
st.session_state.working_seed = init_FD_auxiliary_seed_frames(sharp_split_var)
|
837 |
+
|
838 |
+
fd_id_dict = dict(zip(fd_auxiliary.Player, fd_auxiliary.player_id))
|
839 |
+
raw_baselines = fd_auxiliary
|
840 |
+
column_names = fd_columns
|
841 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
842 |
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
|
843 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|