James McCool
commited on
Commit
·
b107789
1
Parent(s):
3a010ef
Initial Commit
Browse files- app.py +766 -0
- app.yaml +10 -0
- requirements.txt +10 -0
app.py
ADDED
@@ -0,0 +1,766 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
st.set_page_config(layout="wide")
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import pymongo
|
6 |
+
|
7 |
+
@st.cache_resource
|
8 |
+
def init_conn():
|
9 |
+
|
10 |
+
uri = st.secrets['mongo_uri']
|
11 |
+
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
|
12 |
+
db = client["MLB_Database"]
|
13 |
+
|
14 |
+
return db
|
15 |
+
|
16 |
+
db = init_conn()
|
17 |
+
|
18 |
+
percentages_format = {'Exposure': '{:.2%}'}
|
19 |
+
freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
|
20 |
+
dk_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
21 |
+
fd_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
22 |
+
|
23 |
+
st.markdown("""
|
24 |
+
<style>
|
25 |
+
/* Tab styling */
|
26 |
+
.stTabs [data-baseweb="tab-list"] {
|
27 |
+
gap: 8px;
|
28 |
+
padding: 4px;
|
29 |
+
}
|
30 |
+
.stTabs [data-baseweb="tab"] {
|
31 |
+
height: 50px;
|
32 |
+
white-space: pre-wrap;
|
33 |
+
background-color: #FFD700;
|
34 |
+
color: white;
|
35 |
+
border-radius: 10px;
|
36 |
+
gap: 1px;
|
37 |
+
padding: 10px 20px;
|
38 |
+
font-weight: bold;
|
39 |
+
transition: all 0.3s ease;
|
40 |
+
}
|
41 |
+
.stTabs [aria-selected="true"] {
|
42 |
+
background-color: #DAA520;
|
43 |
+
color: white;
|
44 |
+
}
|
45 |
+
.stTabs [data-baseweb="tab"]:hover {
|
46 |
+
background-color: #DAA520;
|
47 |
+
cursor: pointer;
|
48 |
+
}
|
49 |
+
</style>""", unsafe_allow_html=True)
|
50 |
+
|
51 |
+
@st.cache_data(ttl = 60)
|
52 |
+
def init_DK_seed_frames(sharp_split):
|
53 |
+
|
54 |
+
collection = db['DK_MLB_name_map']
|
55 |
+
cursor = collection.find()
|
56 |
+
raw_data = pd.DataFrame(list(cursor))
|
57 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
58 |
+
|
59 |
+
# Get the valid players from the Range of Outcomes collection
|
60 |
+
collection = db["Player_Range_Of_Outcomes"]
|
61 |
+
cursor = collection.find({"Site": "Draftkings", "Slate": "main_slate"})
|
62 |
+
valid_players = set(pd.DataFrame(list(cursor))['Player'].unique())
|
63 |
+
|
64 |
+
collection = db["DK_MLB_seed_frame"]
|
65 |
+
cursor = collection.find().limit(sharp_split)
|
66 |
+
|
67 |
+
raw_display = pd.DataFrame(list(cursor))
|
68 |
+
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
69 |
+
dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
|
70 |
+
# Map names
|
71 |
+
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
72 |
+
|
73 |
+
# Validate lineups against valid players
|
74 |
+
raw_display = validate_lineup_players(raw_display, valid_players, dict_columns)
|
75 |
+
|
76 |
+
# Remove any remaining NaN values
|
77 |
+
raw_display = raw_display.dropna()
|
78 |
+
DK_seed = raw_display.to_numpy()
|
79 |
+
|
80 |
+
return DK_seed
|
81 |
+
|
82 |
+
@st.cache_data(ttl = 60)
|
83 |
+
def init_DK_secondary_seed_frames(sharp_split):
|
84 |
+
|
85 |
+
collection = db['DK_MLB_secondary_name_map']
|
86 |
+
cursor = collection.find()
|
87 |
+
raw_data = pd.DataFrame(list(cursor))
|
88 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
89 |
+
|
90 |
+
# Get the valid players from the Range of Outcomes collection
|
91 |
+
collection = db["Player_Range_Of_Outcomes"]
|
92 |
+
cursor = collection.find({"Site": "Draftkings", "Slate": "secondary_slate"})
|
93 |
+
valid_players = set(pd.DataFrame(list(cursor))['Player'].unique())
|
94 |
+
|
95 |
+
collection = db["DK_MLB_secondary_seed_frame"]
|
96 |
+
cursor = collection.find().limit(sharp_split)
|
97 |
+
|
98 |
+
raw_display = pd.DataFrame(list(cursor))
|
99 |
+
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
100 |
+
dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
|
101 |
+
# Map names
|
102 |
+
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
103 |
+
|
104 |
+
# Validate lineups against valid players
|
105 |
+
raw_display = validate_lineup_players(raw_display, valid_players, dict_columns)
|
106 |
+
|
107 |
+
# Remove any remaining NaN values
|
108 |
+
raw_display = raw_display.dropna()
|
109 |
+
DK_seed = raw_display.to_numpy()
|
110 |
+
|
111 |
+
return DK_seed
|
112 |
+
|
113 |
+
@st.cache_data(ttl = 60)
|
114 |
+
def init_FD_seed_frames(sharp_split):
|
115 |
+
|
116 |
+
collection = db['FD_MLB_name_map']
|
117 |
+
cursor = collection.find()
|
118 |
+
raw_data = pd.DataFrame(list(cursor))
|
119 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
120 |
+
|
121 |
+
# Get the valid players from the Range of Outcomes collection
|
122 |
+
collection = db["Player_Range_Of_Outcomes"]
|
123 |
+
cursor = collection.find({"Site": "Fanduel", "Slate": "main_slate"})
|
124 |
+
valid_players = set(pd.DataFrame(list(cursor))['Player'].unique())
|
125 |
+
|
126 |
+
collection = db["FD_MLB_seed_frame"]
|
127 |
+
cursor = collection.find().limit(sharp_split)
|
128 |
+
|
129 |
+
raw_display = pd.DataFrame(list(cursor))
|
130 |
+
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
131 |
+
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
|
132 |
+
# Map names
|
133 |
+
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
134 |
+
|
135 |
+
# Validate lineups against valid players
|
136 |
+
raw_display = validate_lineup_players(raw_display, valid_players, dict_columns)
|
137 |
+
|
138 |
+
# Remove any remaining NaN values
|
139 |
+
raw_display = raw_display.dropna()
|
140 |
+
FD_seed = raw_display.to_numpy()
|
141 |
+
|
142 |
+
return FD_seed
|
143 |
+
|
144 |
+
@st.cache_data(ttl = 60)
|
145 |
+
def init_FD_secondary_seed_frames(sharp_split):
|
146 |
+
|
147 |
+
collection = db['FD_MLB_secondary_name_map']
|
148 |
+
cursor = collection.find()
|
149 |
+
raw_data = pd.DataFrame(list(cursor))
|
150 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
151 |
+
|
152 |
+
# Get the valid players from the Range of Outcomes collection
|
153 |
+
collection = db["Player_Range_Of_Outcomes"]
|
154 |
+
cursor = collection.find({"Site": "Fanduel", "Slate": "secondary_slate"})
|
155 |
+
valid_players = set(pd.DataFrame(list(cursor))['Player'].unique())
|
156 |
+
|
157 |
+
collection = db["FD_MLB_secondary_seed_frame"]
|
158 |
+
cursor = collection.find().limit(sharp_split)
|
159 |
+
|
160 |
+
raw_display = pd.DataFrame(list(cursor))
|
161 |
+
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
162 |
+
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
|
163 |
+
# Map names
|
164 |
+
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
|
165 |
+
|
166 |
+
# Validate lineups against valid players
|
167 |
+
raw_display = validate_lineup_players(raw_display, valid_players, dict_columns)
|
168 |
+
|
169 |
+
# Remove any remaining NaN values
|
170 |
+
raw_display = raw_display.dropna()
|
171 |
+
FD_seed = raw_display.to_numpy()
|
172 |
+
|
173 |
+
return FD_seed
|
174 |
+
|
175 |
+
@st.cache_data(ttl = 599)
|
176 |
+
def init_baselines():
|
177 |
+
collection = db["Player_Range_Of_Outcomes"]
|
178 |
+
cursor = collection.find()
|
179 |
+
|
180 |
+
load_display = pd.DataFrame(list(cursor))
|
181 |
+
|
182 |
+
load_display.replace('', np.nan, inplace=True)
|
183 |
+
load_display.rename(columns={"Fantasy": "Median", 'Name': 'Player', 'player_ID': 'player_id'}, inplace = True)
|
184 |
+
load_display = load_display[load_display['Median'] > 0]
|
185 |
+
|
186 |
+
dk_roo_raw = load_display[load_display['Site'] == 'Draftkings']
|
187 |
+
dk_roo_raw = dk_roo_raw[dk_roo_raw['Slate'] == 'main_slate']
|
188 |
+
dk_roo_raw['STDev'] = dk_roo_raw['Median'] / 3
|
189 |
+
dk_raw = dk_roo_raw.dropna(subset=['Median'])
|
190 |
+
dk_raw = dk_raw.rename(columns={'Own%': 'Own'})
|
191 |
+
|
192 |
+
fd_roo_raw = load_display[load_display['Site'] == 'Fanduel']
|
193 |
+
fd_roo_raw = fd_roo_raw[fd_roo_raw['Slate'] == 'main_slate']
|
194 |
+
fd_roo_raw['STDev'] = fd_roo_raw['Median'] / 3
|
195 |
+
fd_raw = fd_roo_raw.dropna(subset=['Median'])
|
196 |
+
fd_raw = fd_raw.rename(columns={'Own%': 'Own'})
|
197 |
+
|
198 |
+
dk_secondary_roo_raw = load_display[load_display['Site'] == 'Draftkings']
|
199 |
+
dk_secondary_roo_raw = dk_secondary_roo_raw[dk_secondary_roo_raw['Slate'] == 'secondary_slate']
|
200 |
+
dk_secondary_roo_raw['STDev'] = dk_secondary_roo_raw['Median'] / 3
|
201 |
+
dk_secondary = dk_secondary_roo_raw.dropna(subset=['Median'])
|
202 |
+
dk_secondary = dk_secondary.rename(columns={'Own%': 'Own'})
|
203 |
+
|
204 |
+
fd_secondary_roo_raw = load_display[load_display['Site'] == 'Fanduel']
|
205 |
+
fd_secondary_roo_raw = fd_secondary_roo_raw[fd_secondary_roo_raw['Slate'] == 'secondary_slate']
|
206 |
+
fd_secondary_roo_raw['STDev'] = fd_secondary_roo_raw['Median'] / 3
|
207 |
+
fd_secondary = fd_secondary_roo_raw.dropna(subset=['Median'])
|
208 |
+
fd_secondary = fd_secondary.rename(columns={'Own%': 'Own'})
|
209 |
+
|
210 |
+
teams_playing_count = len(dk_raw.Team.unique())
|
211 |
+
|
212 |
+
return dk_raw, fd_raw, dk_secondary, fd_secondary, teams_playing_count
|
213 |
+
|
214 |
+
@st.cache_data
|
215 |
+
def validate_lineup_players(df, valid_players, player_columns):
|
216 |
+
"""
|
217 |
+
Validates that all players in specified columns exist in valid_players set
|
218 |
+
|
219 |
+
Args:
|
220 |
+
df: DataFrame containing lineups
|
221 |
+
valid_players: Set of valid player names
|
222 |
+
player_columns: List of columns containing player names
|
223 |
+
|
224 |
+
Returns:
|
225 |
+
DataFrame with only valid lineups
|
226 |
+
"""
|
227 |
+
valid_rows = df[player_columns].apply(lambda x: x.isin(valid_players)).all(axis=1)
|
228 |
+
return df[valid_rows]
|
229 |
+
|
230 |
+
@st.cache_data
|
231 |
+
def convert_df(array):
|
232 |
+
array = pd.DataFrame(array, columns=column_names)
|
233 |
+
return array.to_csv().encode('utf-8')
|
234 |
+
|
235 |
+
@st.cache_data
|
236 |
+
def calculate_DK_value_frequencies(np_array):
|
237 |
+
unique, counts = np.unique(np_array[:, :10], return_counts=True)
|
238 |
+
frequencies = counts / len(np_array) # Normalize by the number of rows
|
239 |
+
combined_array = np.column_stack((unique, frequencies))
|
240 |
+
return combined_array
|
241 |
+
|
242 |
+
@st.cache_data
|
243 |
+
def calculate_FD_value_frequencies(np_array):
|
244 |
+
unique, counts = np.unique(np_array[:, :9], return_counts=True)
|
245 |
+
frequencies = counts / len(np_array) # Normalize by the number of rows
|
246 |
+
combined_array = np.column_stack((unique, frequencies))
|
247 |
+
return combined_array
|
248 |
+
|
249 |
+
@st.cache_data
|
250 |
+
def sim_contest(Sim_size, seed_frame, maps_dict, Contest_Size, teams_playing_count, site):
|
251 |
+
SimVar = 1
|
252 |
+
Sim_Winners = []
|
253 |
+
fp_array = seed_frame.copy()
|
254 |
+
# Pre-vectorize functions
|
255 |
+
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
|
256 |
+
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
|
257 |
+
|
258 |
+
st.write('Simulating contest on frames')
|
259 |
+
|
260 |
+
while SimVar <= Sim_size:
|
261 |
+
fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)]
|
262 |
+
|
263 |
+
if site == 'Draftkings':
|
264 |
+
# Calculate stack multipliers first
|
265 |
+
stack_multiplier = np.ones(fp_random.shape[0]) # Start with no bonus
|
266 |
+
stack_multiplier += np.minimum(0.10, np.where(fp_random[:, 13] == 4, 0.025 * (teams_playing_count - 8), 0))
|
267 |
+
stack_multiplier += np.minimum(0.15, np.where(fp_random[:, 13] >= 5, 0.025 * (teams_playing_count - 12), 0))
|
268 |
+
elif site == 'Fanduel':
|
269 |
+
# Calculate stack multipliers first
|
270 |
+
stack_multiplier = np.ones(fp_random.shape[0]) # Start with no bonus
|
271 |
+
stack_multiplier += np.minimum(0.10, np.where(fp_random[:, 12] == 4, 0.025 * (teams_playing_count - 8), 0))
|
272 |
+
stack_multiplier += np.minimum(0.15, np.where(fp_random[:, 12] >= 5, 0.025 * (teams_playing_count - 12), 0))
|
273 |
+
|
274 |
+
# Apply multipliers to both loc and scale in the normal distribution
|
275 |
+
base_projections = np.sum(np.random.normal(
|
276 |
+
loc=vec_projection_map(fp_random[:, :-7]) * stack_multiplier[:, np.newaxis],
|
277 |
+
scale=vec_stdev_map(fp_random[:, :-7]) * stack_multiplier[:, np.newaxis]),
|
278 |
+
axis=1)
|
279 |
+
|
280 |
+
final_projections = base_projections
|
281 |
+
|
282 |
+
sample_arrays = np.c_[fp_random, final_projections]
|
283 |
+
if site == 'Draftkings':
|
284 |
+
final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
|
285 |
+
elif site == 'Fanduel':
|
286 |
+
final_array = sample_arrays[sample_arrays[:, 9].argsort()[::-1]]
|
287 |
+
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
|
288 |
+
Sim_Winners.append(best_lineup)
|
289 |
+
SimVar += 1
|
290 |
+
|
291 |
+
return Sim_Winners
|
292 |
+
|
293 |
+
dk_raw, fd_raw, dk_secondary, fd_secondary, teams_playing_count = init_baselines()
|
294 |
+
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
295 |
+
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
296 |
+
|
297 |
+
tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
|
298 |
+
|
299 |
+
with tab1:
|
300 |
+
with st.expander("Info and Filters"):
|
301 |
+
if st.button("Load/Reset Data", key='reset2'):
|
302 |
+
st.cache_data.clear()
|
303 |
+
for key in st.session_state.keys():
|
304 |
+
del st.session_state[key]
|
305 |
+
DK_seed = init_DK_seed_frames(10000)
|
306 |
+
FD_seed = init_FD_seed_frames(10000)
|
307 |
+
dk_raw, fd_raw, dk_secondary, fd_secondary, teams_playing_count = init_baselines()
|
308 |
+
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
309 |
+
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
310 |
+
|
311 |
+
sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'), key='sim_slate_var1')
|
312 |
+
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
|
313 |
+
|
314 |
+
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
|
315 |
+
if contest_var1 == 'Small':
|
316 |
+
Contest_Size = 1000
|
317 |
+
elif contest_var1 == 'Medium':
|
318 |
+
Contest_Size = 5000
|
319 |
+
elif contest_var1 == 'Large':
|
320 |
+
Contest_Size = 10000
|
321 |
+
elif contest_var1 == 'Custom':
|
322 |
+
Contest_Size = st.number_input("Insert contest size", value=100, placeholder="Type a number under 10,000...")
|
323 |
+
strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very'))
|
324 |
+
if strength_var1 == 'Not Very':
|
325 |
+
sharp_split = 500000
|
326 |
+
elif strength_var1 == 'Below Average':
|
327 |
+
sharp_split = 250000
|
328 |
+
elif strength_var1 == 'Average':
|
329 |
+
sharp_split = 100000
|
330 |
+
elif strength_var1 == 'Above Average':
|
331 |
+
sharp_split = 50000
|
332 |
+
elif strength_var1 == 'Very':
|
333 |
+
sharp_split = 10000
|
334 |
+
|
335 |
+
if st.button("Run Contest Sim"):
|
336 |
+
if 'working_seed' in st.session_state:
|
337 |
+
st.session_state.maps_dict = {
|
338 |
+
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
339 |
+
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
340 |
+
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
|
341 |
+
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
|
342 |
+
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
343 |
+
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
344 |
+
}
|
345 |
+
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size, teams_playing_count, sim_site_var1)
|
346 |
+
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
347 |
+
|
348 |
+
#st.table(Sim_Winner_Frame)
|
349 |
+
|
350 |
+
# Initial setup
|
351 |
+
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
|
352 |
+
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
|
353 |
+
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
|
354 |
+
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
|
355 |
+
|
356 |
+
# Type Casting
|
357 |
+
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
|
358 |
+
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
359 |
+
|
360 |
+
# Sorting
|
361 |
+
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
|
362 |
+
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
|
363 |
+
|
364 |
+
# Data Copying
|
365 |
+
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
366 |
+
for col in st.session_state.Sim_Winner_Export.iloc[:, 0:9].columns:
|
367 |
+
st.session_state.Sim_Winner_Export[col] = st.session_state.Sim_Winner_Export[col].map(dk_id_dict)
|
368 |
+
st.session_state.Sim_Winner_Export = st.session_state.Sim_Winner_Export.drop_duplicates(subset=['Team', 'Secondary', 'salary', 'unique_id'])
|
369 |
+
|
370 |
+
# Data Copying
|
371 |
+
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
|
372 |
+
|
373 |
+
else:
|
374 |
+
if sim_site_var1 == 'Draftkings':
|
375 |
+
if sim_slate_var1 == 'Main Slate':
|
376 |
+
st.session_state.working_seed = init_DK_seed_frames(sharp_split)
|
377 |
+
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
378 |
+
raw_baselines = dk_raw
|
379 |
+
column_names = dk_columns
|
380 |
+
elif sim_site_var1 == 'Fanduel':
|
381 |
+
if sim_slate_var1 == 'Main Slate':
|
382 |
+
st.session_state.working_seed = init_FD_seed_frames(sharp_split)
|
383 |
+
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
384 |
+
raw_baselines = fd_raw
|
385 |
+
column_names = fd_columns
|
386 |
+
|
387 |
+
st.session_state.maps_dict = {
|
388 |
+
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
389 |
+
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
390 |
+
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
|
391 |
+
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
|
392 |
+
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
393 |
+
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
394 |
+
}
|
395 |
+
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size, teams_playing_count, sim_site_var1)
|
396 |
+
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
397 |
+
|
398 |
+
#st.table(Sim_Winner_Frame)
|
399 |
+
|
400 |
+
# Initial setup
|
401 |
+
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
|
402 |
+
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
|
403 |
+
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
|
404 |
+
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
|
405 |
+
|
406 |
+
# Type Casting
|
407 |
+
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
|
408 |
+
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
409 |
+
|
410 |
+
# Sorting
|
411 |
+
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
|
412 |
+
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
|
413 |
+
|
414 |
+
# Data Copying
|
415 |
+
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
416 |
+
for col in st.session_state.Sim_Winner_Export.iloc[:, 0:9].columns:
|
417 |
+
st.session_state.Sim_Winner_Export[col] = st.session_state.Sim_Winner_Export[col].map(dk_id_dict)
|
418 |
+
st.session_state.Sim_Winner_Export = st.session_state.Sim_Winner_Export.drop_duplicates(subset=['Team', 'Secondary', 'salary', 'unique_id'])
|
419 |
+
|
420 |
+
# Data Copying
|
421 |
+
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
|
422 |
+
st.session_state.freq_copy = st.session_state.Sim_Winner_Display
|
423 |
+
|
424 |
+
if sim_site_var1 == 'Draftkings':
|
425 |
+
freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:10].values, return_counts=True)),
|
426 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
427 |
+
elif sim_site_var1 == 'Fanduel':
|
428 |
+
freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)),
|
429 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
430 |
+
freq_working['Freq'] = freq_working['Freq'].astype(int)
|
431 |
+
freq_working['Position'] = freq_working['Player'].map(st.session_state.maps_dict['Pos_map'])
|
432 |
+
freq_working['Salary'] = freq_working['Player'].map(st.session_state.maps_dict['Salary_map'])
|
433 |
+
freq_working['Proj Own'] = freq_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
|
434 |
+
freq_working['Exposure'] = freq_working['Freq']/(1000)
|
435 |
+
freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own']
|
436 |
+
freq_working['Team'] = freq_working['Player'].map(st.session_state.maps_dict['Team_map'])
|
437 |
+
st.session_state.player_freq = freq_working.copy()
|
438 |
+
|
439 |
+
if sim_site_var1 == 'Draftkings':
|
440 |
+
sp_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:2].values, return_counts=True)),
|
441 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
442 |
+
elif sim_site_var1 == 'Fanduel':
|
443 |
+
sp_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:1].values, return_counts=True)),
|
444 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
445 |
+
sp_working['Freq'] = sp_working['Freq'].astype(int)
|
446 |
+
sp_working['Position'] = sp_working['Player'].map(st.session_state.maps_dict['Pos_map'])
|
447 |
+
sp_working['Salary'] = sp_working['Player'].map(st.session_state.maps_dict['Salary_map'])
|
448 |
+
sp_working['Proj Own'] = sp_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
|
449 |
+
sp_working['Exposure'] = sp_working['Freq']/(1000)
|
450 |
+
sp_working['Edge'] = sp_working['Exposure'] - sp_working['Proj Own']
|
451 |
+
sp_working['Team'] = sp_working['Player'].map(st.session_state.maps_dict['Team_map'])
|
452 |
+
st.session_state.sp_freq = sp_working.copy()
|
453 |
+
|
454 |
+
if sim_site_var1 == 'Draftkings':
|
455 |
+
team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,12:13].values, return_counts=True)),
|
456 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
457 |
+
elif sim_site_var1 == 'Fanduel':
|
458 |
+
team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,11:12].values, return_counts=True)),
|
459 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
460 |
+
team_working['Freq'] = team_working['Freq'].astype(int)
|
461 |
+
team_working['Exposure'] = team_working['Freq']/(1000)
|
462 |
+
st.session_state.team_freq = team_working.copy()
|
463 |
+
|
464 |
+
if sim_site_var1 == 'Draftkings':
|
465 |
+
stack_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,13:14].values, return_counts=True)),
|
466 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
467 |
+
elif sim_site_var1 == 'Fanduel':
|
468 |
+
stack_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,12:13].values, return_counts=True)),
|
469 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
470 |
+
stack_working['Freq'] = stack_working['Freq'].astype(int)
|
471 |
+
stack_working['Exposure'] = stack_working['Freq']/(1000)
|
472 |
+
st.session_state.stack_freq = stack_working.copy()
|
473 |
+
|
474 |
+
with st.container():
|
475 |
+
if st.button("Reset Sim", key='reset_sim'):
|
476 |
+
for key in st.session_state.keys():
|
477 |
+
del st.session_state[key]
|
478 |
+
if 'player_freq' in st.session_state:
|
479 |
+
player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
|
480 |
+
if player_split_var2 == 'Specific Players':
|
481 |
+
find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique())
|
482 |
+
elif player_split_var2 == 'Full Players':
|
483 |
+
find_var2 = st.session_state.player_freq.Player.values.tolist()
|
484 |
+
|
485 |
+
if player_split_var2 == 'Specific Players':
|
486 |
+
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)]
|
487 |
+
if player_split_var2 == 'Full Players':
|
488 |
+
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
|
489 |
+
if 'Sim_Winner_Display' in st.session_state:
|
490 |
+
st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
491 |
+
if 'Sim_Winner_Export' in st.session_state:
|
492 |
+
st.download_button(
|
493 |
+
|
494 |
+
label="Export Full Frame",
|
495 |
+
data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
|
496 |
+
file_name='MLB_consim_export.csv',
|
497 |
+
mime='text/csv',
|
498 |
+
)
|
499 |
+
tab1, tab2 = st.tabs(['Winning Frame Statistics', 'Stack Type Statistics'])
|
500 |
+
|
501 |
+
with tab1:
|
502 |
+
if 'Sim_Winner_Display' in st.session_state:
|
503 |
+
# Create a new dataframe with summary statistics
|
504 |
+
summary_df = pd.DataFrame({
|
505 |
+
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
|
506 |
+
'Salary': [
|
507 |
+
st.session_state.Sim_Winner_Display['salary'].min(),
|
508 |
+
st.session_state.Sim_Winner_Display['salary'].mean(),
|
509 |
+
st.session_state.Sim_Winner_Display['salary'].max(),
|
510 |
+
st.session_state.Sim_Winner_Display['salary'].std()
|
511 |
+
],
|
512 |
+
'Proj': [
|
513 |
+
st.session_state.Sim_Winner_Display['proj'].min(),
|
514 |
+
st.session_state.Sim_Winner_Display['proj'].mean(),
|
515 |
+
st.session_state.Sim_Winner_Display['proj'].max(),
|
516 |
+
st.session_state.Sim_Winner_Display['proj'].std()
|
517 |
+
],
|
518 |
+
'Own': [
|
519 |
+
st.session_state.Sim_Winner_Display['Own'].min(),
|
520 |
+
st.session_state.Sim_Winner_Display['Own'].mean(),
|
521 |
+
st.session_state.Sim_Winner_Display['Own'].max(),
|
522 |
+
st.session_state.Sim_Winner_Display['Own'].std()
|
523 |
+
],
|
524 |
+
'Fantasy': [
|
525 |
+
st.session_state.Sim_Winner_Display['Fantasy'].min(),
|
526 |
+
st.session_state.Sim_Winner_Display['Fantasy'].mean(),
|
527 |
+
st.session_state.Sim_Winner_Display['Fantasy'].max(),
|
528 |
+
st.session_state.Sim_Winner_Display['Fantasy'].std()
|
529 |
+
],
|
530 |
+
'GPP_Proj': [
|
531 |
+
st.session_state.Sim_Winner_Display['GPP_Proj'].min(),
|
532 |
+
st.session_state.Sim_Winner_Display['GPP_Proj'].mean(),
|
533 |
+
st.session_state.Sim_Winner_Display['GPP_Proj'].max(),
|
534 |
+
st.session_state.Sim_Winner_Display['GPP_Proj'].std()
|
535 |
+
]
|
536 |
+
})
|
537 |
+
|
538 |
+
# Set the index of the summary dataframe as the "Metric" column
|
539 |
+
summary_df = summary_df.set_index('Metric')
|
540 |
+
|
541 |
+
# Display the summary dataframe
|
542 |
+
st.subheader("Winning Frame Statistics")
|
543 |
+
st.dataframe(summary_df.style.format({
|
544 |
+
'Salary': '{:.2f}',
|
545 |
+
'Proj': '{:.2f}',
|
546 |
+
'Own': '{:.2f}',
|
547 |
+
'Fantasy': '{:.2f}',
|
548 |
+
'GPP_Proj': '{:.2f}'
|
549 |
+
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own', 'Fantasy', 'GPP_Proj']), use_container_width=True)
|
550 |
+
|
551 |
+
with tab2:
|
552 |
+
if 'Sim_Winner_Display' in st.session_state:
|
553 |
+
# Apply position mapping to FLEX column
|
554 |
+
stack_counts = st.session_state.freq_copy['Team_count'].value_counts()
|
555 |
+
|
556 |
+
# Calculate average statistics for each stack size
|
557 |
+
stack_stats = st.session_state.freq_copy.groupby('Team_count').agg({
|
558 |
+
'proj': 'mean',
|
559 |
+
'Own': 'mean',
|
560 |
+
'Fantasy': 'mean',
|
561 |
+
'GPP_Proj': 'mean'
|
562 |
+
})
|
563 |
+
|
564 |
+
# Combine counts and average statistics
|
565 |
+
stack_summary = pd.concat([stack_counts, stack_stats], axis=1)
|
566 |
+
stack_summary.columns = ['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']
|
567 |
+
stack_summary = stack_summary.reset_index()
|
568 |
+
stack_summary.columns = ['Stack Size', 'Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']
|
569 |
+
stack_summary = stack_summary.sort_values(by='Stack Size', ascending=True)
|
570 |
+
stack_summary = stack_summary.set_index('Stack Size')
|
571 |
+
|
572 |
+
# Display the summary dataframe
|
573 |
+
st.subheader("Stack Type Statistics")
|
574 |
+
st.dataframe(stack_summary.style.format({
|
575 |
+
'Count': '{:.0f}',
|
576 |
+
'Avg Proj': '{:.2f}',
|
577 |
+
'Avg Own': '{:.2f}',
|
578 |
+
'Avg Fantasy': '{:.2f}',
|
579 |
+
'Avg GPP_Proj': '{:.2f}'
|
580 |
+
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']), use_container_width=True)
|
581 |
+
else:
|
582 |
+
st.write("Simulation data or position mapping not available.")
|
583 |
+
|
584 |
+
|
585 |
+
with st.container():
|
586 |
+
tab1, tab2, tab3, tab4 = st.tabs(['Overall Exposures', 'SP Exposures', 'Team Exposures', 'Stack Size Exposures'])
|
587 |
+
with tab1:
|
588 |
+
if 'player_freq' in st.session_state:
|
589 |
+
|
590 |
+
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
591 |
+
st.download_button(
|
592 |
+
label="Export Exposures",
|
593 |
+
data=st.session_state.player_freq.to_csv().encode('utf-8'),
|
594 |
+
file_name='player_freq_export.csv',
|
595 |
+
mime='text/csv',
|
596 |
+
key='overall'
|
597 |
+
)
|
598 |
+
with tab2:
|
599 |
+
if 'sp_freq' in st.session_state:
|
600 |
+
|
601 |
+
st.dataframe(st.session_state.sp_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
602 |
+
st.download_button(
|
603 |
+
label="Export Exposures",
|
604 |
+
data=st.session_state.sp_freq.to_csv().encode('utf-8'),
|
605 |
+
file_name='sp_freq.csv',
|
606 |
+
mime='text/csv',
|
607 |
+
key='sp'
|
608 |
+
)
|
609 |
+
with tab3:
|
610 |
+
if 'team_freq' in st.session_state:
|
611 |
+
|
612 |
+
st.dataframe(st.session_state.team_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
|
613 |
+
st.download_button(
|
614 |
+
label="Export Exposures",
|
615 |
+
data=st.session_state.team_freq.to_csv().encode('utf-8'),
|
616 |
+
file_name='team_freq.csv',
|
617 |
+
mime='text/csv',
|
618 |
+
key='team'
|
619 |
+
)
|
620 |
+
with tab4:
|
621 |
+
if 'stack_freq' in st.session_state:
|
622 |
+
|
623 |
+
st.dataframe(st.session_state.stack_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
|
624 |
+
st.download_button(
|
625 |
+
label="Export Exposures",
|
626 |
+
data=st.session_state.stack_freq.to_csv().encode('utf-8'),
|
627 |
+
file_name='stack_freq.csv',
|
628 |
+
mime='text/csv',
|
629 |
+
key='stack'
|
630 |
+
)
|
631 |
+
|
632 |
+
with tab2:
|
633 |
+
with st.expander("Info and Filters"):
|
634 |
+
if st.button("Load/Reset Data", key='reset1'):
|
635 |
+
st.cache_data.clear()
|
636 |
+
for key in st.session_state.keys():
|
637 |
+
del st.session_state[key]
|
638 |
+
DK_seed = init_DK_seed_frames(10000)
|
639 |
+
FD_seed = init_FD_seed_frames(10000)
|
640 |
+
dk_raw, fd_raw, dk_secondary, fd_secondary, teams_playing_count = init_baselines()
|
641 |
+
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
642 |
+
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
643 |
+
|
644 |
+
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate'))
|
645 |
+
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
646 |
+
sharp_split_var = st.number_input("How many lineups do you want?", value=10000, max_value=500000, min_value=10000, step=10000)
|
647 |
+
lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=500, value=10, step=1)
|
648 |
+
|
649 |
+
if site_var1 == 'Draftkings':
|
650 |
+
|
651 |
+
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
652 |
+
if team_var1 == 'Specific Teams':
|
653 |
+
team_var2 = st.multiselect('Which teams do you want?', options = dk_raw['Team'].unique())
|
654 |
+
elif team_var1 == 'Full Slate':
|
655 |
+
team_var2 = dk_raw.Team.values.tolist()
|
656 |
+
|
657 |
+
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
|
658 |
+
if stack_var1 == 'Specific Stack Sizes':
|
659 |
+
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
|
660 |
+
elif stack_var1 == 'Full Slate':
|
661 |
+
stack_var2 = [5, 4, 3, 2, 1, 0]
|
662 |
+
|
663 |
+
raw_baselines = dk_raw
|
664 |
+
column_names = dk_columns
|
665 |
+
|
666 |
+
elif site_var1 == 'Fanduel':
|
667 |
+
|
668 |
+
team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
|
669 |
+
if team_var1 == 'Specific Teams':
|
670 |
+
team_var2 = st.multiselect('Which teams do you want?', options = fd_raw['Team'].unique())
|
671 |
+
elif team_var1 == 'Full Slate':
|
672 |
+
team_var2 = fd_raw.Team.values.tolist()
|
673 |
+
|
674 |
+
stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
|
675 |
+
if stack_var1 == 'Specific Stack Sizes':
|
676 |
+
stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
|
677 |
+
elif stack_var1 == 'Full Slate':
|
678 |
+
stack_var2 = [5, 4, 3, 2, 1, 0]
|
679 |
+
|
680 |
+
raw_baselines = fd_raw
|
681 |
+
column_names = fd_columns
|
682 |
+
|
683 |
+
|
684 |
+
if st.button("Prepare data export", key='data_export'):
|
685 |
+
if 'working_seed' in st.session_state:
|
686 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
687 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
|
688 |
+
st.session_state.data_export_display = st.session_state.working_seed[0:lineup_num_var]
|
689 |
+
elif 'working_seed' not in st.session_state:
|
690 |
+
if site_var1 == 'Draftkings':
|
691 |
+
if slate_var1 == 'Main Slate':
|
692 |
+
st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
|
693 |
+
|
694 |
+
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
695 |
+
raw_baselines = dk_raw
|
696 |
+
column_names = dk_columns
|
697 |
+
elif slate_var1 == 'Secondary Slate':
|
698 |
+
st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split_var)
|
699 |
+
|
700 |
+
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
701 |
+
raw_baselines = dk_raw
|
702 |
+
column_names = dk_columns
|
703 |
+
|
704 |
+
elif site_var1 == 'Fanduel':
|
705 |
+
if slate_var1 == 'Main Slate':
|
706 |
+
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
|
707 |
+
|
708 |
+
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
709 |
+
raw_baselines = fd_raw
|
710 |
+
column_names = fd_columns
|
711 |
+
elif slate_var1 == 'Secondary Slate':
|
712 |
+
st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split_var)
|
713 |
+
|
714 |
+
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
715 |
+
raw_baselines = fd_raw
|
716 |
+
column_names = fd_columns
|
717 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
718 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
|
719 |
+
st.session_state.data_export_display = st.session_state.working_seed[0:lineup_num_var]
|
720 |
+
data_export = st.session_state.working_seed.copy()
|
721 |
+
st.download_button(
|
722 |
+
label="Export optimals set",
|
723 |
+
data=convert_df(data_export),
|
724 |
+
file_name='MLB_optimals_export.csv',
|
725 |
+
mime='text/csv',
|
726 |
+
)
|
727 |
+
for key in st.session_state.keys():
|
728 |
+
del st.session_state[key]
|
729 |
+
|
730 |
+
if st.button("Load Data", key='load_data'):
|
731 |
+
if site_var1 == 'Draftkings':
|
732 |
+
if 'working_seed' in st.session_state:
|
733 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
734 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
|
735 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
736 |
+
elif 'working_seed' not in st.session_state:
|
737 |
+
if slate_var1 == 'Main Slate':
|
738 |
+
st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
|
739 |
+
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
740 |
+
|
741 |
+
raw_baselines = dk_raw
|
742 |
+
column_names = dk_columns
|
743 |
+
|
744 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
745 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
|
746 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
747 |
+
|
748 |
+
elif site_var1 == 'Fanduel':
|
749 |
+
if 'working_seed' in st.session_state:
|
750 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
751 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
|
752 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
753 |
+
elif 'working_seed' not in st.session_state:
|
754 |
+
if slate_var1 == 'Main Slate':
|
755 |
+
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
|
756 |
+
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
757 |
+
|
758 |
+
raw_baselines = fd_raw
|
759 |
+
column_names = fd_columns
|
760 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
|
761 |
+
st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 10], stack_var2)]
|
762 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
763 |
+
|
764 |
+
with st.container():
|
765 |
+
if 'data_export_display' in st.session_state:
|
766 |
+
st.dataframe(st.session_state.data_export_display.style.format(freq_format, precision=2), use_container_width = True)
|
app.yaml
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
runtime: python
|
2 |
+
env: flex
|
3 |
+
|
4 |
+
runtime_config:
|
5 |
+
python_version: 3
|
6 |
+
|
7 |
+
entrypoint: streamlit run streamlit-app.py --server.port $PORT
|
8 |
+
|
9 |
+
automatic_scaling:
|
10 |
+
max_num_instances: 1000
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
gspread
|
3 |
+
openpyxl
|
4 |
+
matplotlib
|
5 |
+
pymongo
|
6 |
+
pulp
|
7 |
+
docker
|
8 |
+
plotly
|
9 |
+
scipy
|
10 |
+
polars
|