Spaces:
Running
Running
James McCool
commited on
Commit
·
68cf021
1
Parent(s):
64db329
Refactor baseline initialization to include player ID mappings for Draftkings and Fanduel. Update scoring percentage calculations to incorporate team ownership data for hitters, and enhance data export functionality to allow for exporting both player IDs and names.
Browse files
app.py
CHANGED
@@ -26,7 +26,6 @@ player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_fi
|
|
26 |
dk_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
27 |
fd_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
28 |
|
29 |
-
|
30 |
@st.cache_resource(ttl = 60)
|
31 |
def init_baselines():
|
32 |
collection = db["Player_Range_Of_Outcomes"]
|
@@ -37,7 +36,9 @@ def init_baselines():
|
|
37 |
roo_data['Salary'] = roo_data['Salary'].astype(int)
|
38 |
|
39 |
dk_roo = roo_data[roo_data['Site'] == 'Draftkings']
|
|
|
40 |
fd_roo = roo_data[roo_data['Site'] == 'Fanduel']
|
|
|
41 |
|
42 |
collection = db["Player_SD_Range_Of_Outcomes"]
|
43 |
cursor = collection.find()
|
@@ -55,22 +56,8 @@ def init_baselines():
|
|
55 |
scoring_percentages['8+ runs'] = scoring_percentages['8+ runs'].replace('%', '', regex=True).astype(float)
|
56 |
scoring_percentages['Win Percentage'] = scoring_percentages['Win Percentage'].replace('%', '', regex=True).astype(float)
|
57 |
scoring_percentages['Top Score'] = scoring_percentages['Top Score'].replace('', np.nan).astype(float)
|
58 |
-
dk_hitters_only = dk_roo[dk_roo['pos_group'] != 'Pitchers']
|
59 |
-
dk_hitters_only = dk_hitters_only.replace('CWS', 'CHW')
|
60 |
-
dk_team_ownership = dk_hitters_only.groupby('Team')['Own%'].sum().reset_index()
|
61 |
-
fd_hitters_only = fd_roo[fd_roo['pos_group'] != 'Pitchers']
|
62 |
-
fd_hitters_only = fd_hitters_only.replace('CWS', 'CHW')
|
63 |
-
fd_team_ownership = fd_hitters_only.groupby('Team')['Own%'].sum().reset_index()
|
64 |
-
scoring_percentages = scoring_percentages.merge(dk_team_ownership, left_on='Names', right_on='Team', how='left')
|
65 |
-
scoring_percentages.rename(columns={'Own%': 'DK Own%'}, inplace=True)
|
66 |
-
scoring_percentages.drop('Team', axis=1, inplace=True)
|
67 |
-
scoring_percentages = scoring_percentages.merge(fd_team_ownership, left_on='Names', right_on='Team', how='left')
|
68 |
-
scoring_percentages.rename(columns={'Own%': 'FD Own%'}, inplace=True)
|
69 |
-
scoring_percentages.drop('Team', axis=1, inplace=True)
|
70 |
-
scoring_percentages['DK LevX'] = scoring_percentages['Top Score'].rank(pct=True).astype(float) - scoring_percentages['DK Own%'].rank(pct=True).astype(float)
|
71 |
-
scoring_percentages['FD LevX'] = scoring_percentages['Top Score'].rank(pct=True).astype(float) - scoring_percentages['FD Own%'].rank(pct=True).astype(float)
|
72 |
|
73 |
-
return roo_data, sd_roo_data, scoring_percentages, dk_roo, fd_roo
|
74 |
|
75 |
@st.cache_data(ttl = 60)
|
76 |
def init_DK_lineups(type_var, slate_var):
|
@@ -226,7 +213,7 @@ col1, col2 = st.columns([1, 9])
|
|
226 |
with col1:
|
227 |
if st.button("Load/Reset Data", key='reset'):
|
228 |
st.cache_data.clear()
|
229 |
-
roo_data, sd_roo_data, scoring_percentages, dk_roo, fd_roo = init_baselines()
|
230 |
hold_display = roo_data
|
231 |
dk_lineups = init_DK_lineups('Regular', 'Main')
|
232 |
fd_lineups = init_FD_lineups('Regular', 'Main')
|
@@ -243,7 +230,7 @@ with col2:
|
|
243 |
|
244 |
tab1, tab2, tab3 = st.tabs(["Scoring Percentages", "Player ROO", "Optimals"])
|
245 |
|
246 |
-
roo_data, sd_roo_data, scoring_percentages, dk_roo, fd_roo = init_baselines()
|
247 |
hold_display = roo_data
|
248 |
|
249 |
with tab1:
|
@@ -258,6 +245,23 @@ with tab1:
|
|
258 |
elif slate_var1 != 'Main Slate':
|
259 |
pass
|
260 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
scoring_percentages = scoring_percentages.sort_values(by='8+ runs', ascending=False)
|
262 |
scoring_percentages = scoring_percentages.drop('Slate', axis=1)
|
263 |
|
@@ -407,19 +411,28 @@ with tab3:
|
|
407 |
player_var2 = raw_baselines.Player.values.tolist()
|
408 |
|
409 |
if st.button("Prepare data export", key='data_export'):
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
|
|
|
|
|
|
417 |
st.download_button(
|
418 |
-
label="Export optimals set",
|
419 |
data=convert_df(data_export),
|
420 |
file_name='MLB_optimals_export.csv',
|
421 |
mime='text/csv',
|
422 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
423 |
|
424 |
if site_var == 'Draftkings':
|
425 |
if 'working_seed' in st.session_state:
|
@@ -456,12 +469,15 @@ with tab3:
|
|
456 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
457 |
|
458 |
export_file = st.session_state.data_export_display.copy()
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
|
|
|
|
|
|
465 |
|
466 |
with st.container():
|
467 |
if st.button("Reset Optimals", key='reset3'):
|
@@ -474,11 +490,17 @@ with tab3:
|
|
474 |
if 'data_export_display' in st.session_state:
|
475 |
st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)
|
476 |
st.download_button(
|
477 |
-
label="Export display optimals",
|
478 |
data=convert_df(export_file),
|
479 |
file_name='MLB_display_optimals.csv',
|
480 |
mime='text/csv',
|
481 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
482 |
|
483 |
with st.container():
|
484 |
if 'working_seed' in st.session_state:
|
|
|
26 |
dk_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
27 |
fd_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
28 |
|
|
|
29 |
@st.cache_resource(ttl = 60)
|
30 |
def init_baselines():
|
31 |
collection = db["Player_Range_Of_Outcomes"]
|
|
|
36 |
roo_data['Salary'] = roo_data['Salary'].astype(int)
|
37 |
|
38 |
dk_roo = roo_data[roo_data['Site'] == 'Draftkings']
|
39 |
+
dk_id_map = dict(zip(dk_roo['Player'], dk_roo['player_ID']))
|
40 |
fd_roo = roo_data[roo_data['Site'] == 'Fanduel']
|
41 |
+
fd_id_map = dict(zip(fd_roo['Player'], fd_roo['player_ID']))
|
42 |
|
43 |
collection = db["Player_SD_Range_Of_Outcomes"]
|
44 |
cursor = collection.find()
|
|
|
56 |
scoring_percentages['8+ runs'] = scoring_percentages['8+ runs'].replace('%', '', regex=True).astype(float)
|
57 |
scoring_percentages['Win Percentage'] = scoring_percentages['Win Percentage'].replace('%', '', regex=True).astype(float)
|
58 |
scoring_percentages['Top Score'] = scoring_percentages['Top Score'].replace('', np.nan).astype(float)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
return roo_data, sd_roo_data, scoring_percentages, dk_roo, fd_roo, dk_id_map, fd_id_map
|
61 |
|
62 |
@st.cache_data(ttl = 60)
|
63 |
def init_DK_lineups(type_var, slate_var):
|
|
|
213 |
with col1:
|
214 |
if st.button("Load/Reset Data", key='reset'):
|
215 |
st.cache_data.clear()
|
216 |
+
roo_data, sd_roo_data, scoring_percentages, dk_roo, fd_roo, dk_id_map, fd_id_map = init_baselines()
|
217 |
hold_display = roo_data
|
218 |
dk_lineups = init_DK_lineups('Regular', 'Main')
|
219 |
fd_lineups = init_FD_lineups('Regular', 'Main')
|
|
|
230 |
|
231 |
tab1, tab2, tab3 = st.tabs(["Scoring Percentages", "Player ROO", "Optimals"])
|
232 |
|
233 |
+
roo_data, sd_roo_data, scoring_percentages, dk_roo, fd_roo, dk_id_map, fd_id_map = init_baselines()
|
234 |
hold_display = roo_data
|
235 |
|
236 |
with tab1:
|
|
|
245 |
elif slate_var1 != 'Main Slate':
|
246 |
pass
|
247 |
|
248 |
+
dk_hitters_only = dk_roo[dk_roo['pos_group'] != 'Pitchers']
|
249 |
+
dk_hitters_only = dk_hitters_only[dk_hitters_only['Slate'] == 'main_slate']
|
250 |
+
dk_hitters_only = dk_hitters_only.replace('CWS', 'CHW')
|
251 |
+
dk_team_ownership = dk_hitters_only.groupby('Team')['Own%'].sum().reset_index()
|
252 |
+
fd_hitters_only = fd_roo[fd_roo['pos_group'] != 'Pitchers']
|
253 |
+
fd_hitters_only = fd_hitters_only[fd_hitters_only['Slate'] == 'main_slate']
|
254 |
+
fd_hitters_only = fd_hitters_only.replace('CWS', 'CHW')
|
255 |
+
fd_team_ownership = fd_hitters_only.groupby('Team')['Own%'].sum().reset_index()
|
256 |
+
scoring_percentages = scoring_percentages.merge(dk_team_ownership, left_on='Names', right_on='Team', how='left')
|
257 |
+
scoring_percentages.rename(columns={'Own%': 'DK Own%'}, inplace=True)
|
258 |
+
scoring_percentages.drop('Team', axis=1, inplace=True)
|
259 |
+
scoring_percentages = scoring_percentages.merge(fd_team_ownership, left_on='Names', right_on='Team', how='left')
|
260 |
+
scoring_percentages.rename(columns={'Own%': 'FD Own%'}, inplace=True)
|
261 |
+
scoring_percentages.drop('Team', axis=1, inplace=True)
|
262 |
+
scoring_percentages['DK LevX'] = scoring_percentages['Top Score'].rank(pct=True).astype(float) - scoring_percentages['DK Own%'].rank(pct=True).astype(float)
|
263 |
+
scoring_percentages['FD LevX'] = scoring_percentages['Top Score'].rank(pct=True).astype(float) - scoring_percentages['FD Own%'].rank(pct=True).astype(float)
|
264 |
+
|
265 |
scoring_percentages = scoring_percentages.sort_values(by='8+ runs', ascending=False)
|
266 |
scoring_percentages = scoring_percentages.drop('Slate', axis=1)
|
267 |
|
|
|
411 |
player_var2 = raw_baselines.Player.values.tolist()
|
412 |
|
413 |
if st.button("Prepare data export", key='data_export'):
|
414 |
+
name_export = pd.DataFrame(st.session_state.working_seed.copy(), columns=column_names)
|
415 |
+
data_export = pd.DataFrame(st.session_state.working_seed.copy(), columns=column_names)
|
416 |
+
if site_var == 'Draftkings':
|
417 |
+
map_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
|
418 |
+
for col_idx in map_columns:
|
419 |
+
data_export[col_idx] = data_export[col_idx].map(dk_id_map)
|
420 |
+
elif site_var == 'Fanduel':
|
421 |
+
map_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
|
422 |
+
for col_idx in map_columns:
|
423 |
+
data_export[col_idx] = data_export[col_idx].map(fd_id_map)
|
424 |
st.download_button(
|
425 |
+
label="Export optimals set (IDs)",
|
426 |
data=convert_df(data_export),
|
427 |
file_name='MLB_optimals_export.csv',
|
428 |
mime='text/csv',
|
429 |
)
|
430 |
+
st.download_button(
|
431 |
+
label="Export optimals set (Names)",
|
432 |
+
data=convert_df(name_export),
|
433 |
+
file_name='MLB_optimals_export.csv',
|
434 |
+
mime='text/csv',
|
435 |
+
)
|
436 |
|
437 |
if site_var == 'Draftkings':
|
438 |
if 'working_seed' in st.session_state:
|
|
|
469 |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
470 |
|
471 |
export_file = st.session_state.data_export_display.copy()
|
472 |
+
name_export = st.session_state.data_export_display.copy()
|
473 |
+
if site_var == 'Draftkings':
|
474 |
+
map_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
|
475 |
+
for col_idx in map_columns:
|
476 |
+
export_file[col_idx] = export_file[col_idx].map(dk_id_map)
|
477 |
+
elif site_var == 'Fanduel':
|
478 |
+
map_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
|
479 |
+
for col_idx in map_columns:
|
480 |
+
export_file[col_idx] = export_file[col_idx].map(fd_id_map)
|
481 |
|
482 |
with st.container():
|
483 |
if st.button("Reset Optimals", key='reset3'):
|
|
|
490 |
if 'data_export_display' in st.session_state:
|
491 |
st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)
|
492 |
st.download_button(
|
493 |
+
label="Export display optimals (IDs)",
|
494 |
data=convert_df(export_file),
|
495 |
file_name='MLB_display_optimals.csv',
|
496 |
mime='text/csv',
|
497 |
)
|
498 |
+
st.download_button(
|
499 |
+
label="Export display optimals (Names)",
|
500 |
+
data=convert_df(name_export),
|
501 |
+
file_name='MLB_display_optimals.csv',
|
502 |
+
mime='text/csv',
|
503 |
+
)
|
504 |
|
505 |
with st.container():
|
506 |
if 'working_seed' in st.session_state:
|