Spaces:
Running
Running
James McCool
commited on
Commit
·
ca15fa4
1
Parent(s):
58d8eb5
Update scoring percentages to include 'Avg_Salary_DK' and 'Avg_Salary_FD' columns. Adjust column selections for Draftkings and Fanduel by dropping unnecessary salary columns, improving data clarity for player statistics in the UI.
Browse files
app.py
CHANGED
@@ -118,7 +118,7 @@ def init_baselines():
|
|
118 |
team_frame = pd.DataFrame(cursor)
|
119 |
scoring_percentages = team_frame.drop(columns=['_id'])
|
120 |
scoring_percentages['Runs/$'] = scoring_percentages['Avg Score'] / (scoring_percentages['Avg_Salary'] / 1000)
|
121 |
-
scoring_percentages = scoring_percentages[['Names', '
|
122 |
'DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'DK Main Top Score', 'FD Main Top Score', 'DK Secondary Top Score', 'FD Secondary Top Score',
|
123 |
'DK Turbo Top Score', 'FD Turbo Top Score']]
|
124 |
scoring_percentages['8+ runs'] = scoring_percentages['8+ runs'].replace('%', '', regex=True).astype(float)
|
@@ -386,10 +386,10 @@ with tab1:
|
|
386 |
scoring_percentages = scoring_percentages.sort_values(by='8+ runs', ascending=False)
|
387 |
if site_var == 'Draftkings':
|
388 |
scoring_percentages = scoring_percentages.rename(columns={'DK LevX': 'LevX', 'DK Own%': 'Own%', 'Avg Score': 'Runs', 'Win Percentage': 'Win%', '8+ runs': '8+ Runs'})
|
389 |
-
scoring_percentages = scoring_percentages.drop(['FD Own%'], axis=1)
|
390 |
elif site_var == 'Fanduel':
|
391 |
scoring_percentages = scoring_percentages.rename(columns={'FD LevX': 'LevX', 'FD Own%': 'Own%', 'Avg Score': 'Runs', 'Win Percentage': 'Win%', '8+ runs': '8+ Runs'})
|
392 |
-
scoring_percentages = scoring_percentages.drop(['DK Own%'], axis=1)
|
393 |
|
394 |
if view_var == "Simple":
|
395 |
scoring_percentages = scoring_percentages[['Names', 'Runs', '8+ Runs', 'Win%', 'LevX', 'Own%']]
|
|
|
118 |
team_frame = pd.DataFrame(cursor)
|
119 |
scoring_percentages = team_frame.drop(columns=['_id'])
|
120 |
scoring_percentages['Runs/$'] = scoring_percentages['Avg Score'] / (scoring_percentages['Avg_Salary'] / 1000)
|
121 |
+
scoring_percentages = scoring_percentages[['Names', 'Avg_Salary_DK', 'Avg_Salary_FD', 'Stack_Prio', 'Opp_SP', 'Avg First Inning', 'First Inning Lead Percentage', 'Avg Fifth Inning', 'Fifth Inning Lead Percentage', 'Avg Score', 'Runs/$', '8+ runs', 'Win Percentage',
|
122 |
'DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'DK Main Top Score', 'FD Main Top Score', 'DK Secondary Top Score', 'FD Secondary Top Score',
|
123 |
'DK Turbo Top Score', 'FD Turbo Top Score']]
|
124 |
scoring_percentages['8+ runs'] = scoring_percentages['8+ runs'].replace('%', '', regex=True).astype(float)
|
|
|
386 |
scoring_percentages = scoring_percentages.sort_values(by='8+ runs', ascending=False)
|
387 |
if site_var == 'Draftkings':
|
388 |
scoring_percentages = scoring_percentages.rename(columns={'DK LevX': 'LevX', 'DK Own%': 'Own%', 'Avg Score': 'Runs', 'Win Percentage': 'Win%', '8+ runs': '8+ Runs'})
|
389 |
+
scoring_percentages = scoring_percentages.drop(['FD Own%', 'Avg_Salary_FD'], axis=1)
|
390 |
elif site_var == 'Fanduel':
|
391 |
scoring_percentages = scoring_percentages.rename(columns={'FD LevX': 'LevX', 'FD Own%': 'Own%', 'Avg Score': 'Runs', 'Win Percentage': 'Win%', '8+ runs': '8+ Runs'})
|
392 |
+
scoring_percentages = scoring_percentages.drop(['DK Own%', 'Avg_Salary_DK'], axis=1)
|
393 |
|
394 |
if view_var == "Simple":
|
395 |
scoring_percentages = scoring_percentages[['Names', 'Runs', '8+ Runs', 'Win%', 'LevX', 'Own%']]
|