James McCool commited on
Commit
c7f5fcd
·
1 Parent(s): a63c15d

Add Streamlit NBA DFS simulation app with MongoDB integration

Browse files
Files changed (3) hide show
  1. app.py +740 -0
  2. app.yaml +10 -0
  3. requirements.txt +10 -0
app.py ADDED
@@ -0,0 +1,740 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ st.set_page_config(layout="wide")
3
+ import numpy as np
4
+ import pandas as pd
5
+ import pymongo
6
+ import time
7
+
8
+ @st.cache_resource
9
+ def init_conn():
10
+
11
+ uri = st.secrets['mongo_uri']
12
+ client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
13
+ db = client["NBA_DFS"]
14
+
15
+ return db
16
+
17
+ db = init_conn()
18
+
19
+ percentages_format = {'Exposure': '{:.2%}'}
20
+ freq_format = {'Proj Own': '{:.2%}', 'Exposure': '{:.2%}', 'Edge': '{:.2%}'}
21
+ dk_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
22
+ fd_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
23
+
24
+ @st.cache_data(ttl = 60)
25
+ def init_DK_seed_frames(load_size):
26
+
27
+ collection = db['DK_NBA_name_map']
28
+ cursor = collection.find()
29
+ raw_data = pd.DataFrame(list(cursor))
30
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
31
+
32
+ collection = db["DK_NBA_seed_frame"]
33
+ cursor = collection.find().limit(load_size)
34
+
35
+ raw_display = pd.DataFrame(list(cursor))
36
+ raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
37
+ dict_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX']
38
+ st.write("converting names")
39
+ for col in dict_columns:
40
+ raw_display[col] = raw_display[col].map(names_dict)
41
+ DK_seed = raw_display.to_numpy()
42
+
43
+ return DK_seed
44
+
45
+ @st.cache_data(ttl = 60)
46
+ def init_DK_secondary_seed_frames(load_size):
47
+
48
+ collection = db['DK_NBA_Secondary_name_map']
49
+ cursor = collection.find()
50
+ raw_data = pd.DataFrame(list(cursor))
51
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
52
+
53
+ collection = db["DK_NBA_Secondary_seed_frame"]
54
+ cursor = collection.find().limit(load_size)
55
+
56
+ raw_display = pd.DataFrame(list(cursor))
57
+ raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
58
+ dict_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX']
59
+ st.write("converting names")
60
+ for col in dict_columns:
61
+ raw_display[col] = raw_display[col].map(names_dict)
62
+ DK_seed = raw_display.to_numpy()
63
+
64
+ return DK_seed
65
+
66
+ @st.cache_data(ttl = 60)
67
+ def init_FD_seed_frames(load_size):
68
+
69
+ collection = db['FD_NBA_name_map']
70
+ cursor = collection.find()
71
+ raw_data = pd.DataFrame(list(cursor))
72
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
73
+
74
+ collection = db["FD_NBA_seed_frame"]
75
+ cursor = collection.find().limit(load_size)
76
+
77
+ raw_display = pd.DataFrame(list(cursor))
78
+ raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
79
+ dict_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1']
80
+ st.write("converting names")
81
+ for col in dict_columns:
82
+ raw_display[col] = raw_display[col].map(names_dict)
83
+ FD_seed = raw_display.to_numpy()
84
+
85
+ return FD_seed
86
+
87
+ @st.cache_data(ttl = 60)
88
+ def init_FD_secondary_seed_frames(load_size):
89
+
90
+ collection = db['FD_NBA_Secondary_name_map']
91
+ cursor = collection.find()
92
+ raw_data = pd.DataFrame(list(cursor))
93
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
94
+
95
+ collection = db["FD_NBA_Secondary_seed_frame"]
96
+ cursor = collection.find().limit(load_size)
97
+
98
+ raw_display = pd.DataFrame(list(cursor))
99
+ raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
100
+ dict_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1']
101
+ st.write("converting names")
102
+ for col in dict_columns:
103
+ raw_display[col] = raw_display[col].map(names_dict)
104
+ FD_seed = raw_display.to_numpy()
105
+
106
+ return FD_seed
107
+
108
+ @st.cache_resource(ttl = 60)
109
+ def init_baselines():
110
+ collection = db["Player_Range_Of_Outcomes"]
111
+ cursor = collection.find()
112
+
113
+ load_display = pd.DataFrame(list(cursor))
114
+
115
+ load_display.replace('', np.nan, inplace=True)
116
+ load_display.rename(columns={"Fantasy": "Median", 'Name': 'Player', 'player_ID': 'player_id'}, inplace = True)
117
+ load_display = load_display[load_display['Median'] > 0]
118
+
119
+ dk_roo_raw = load_display[load_display['site'] == 'Draftkings']
120
+ dk_roo_raw = dk_roo_raw[dk_roo_raw['slate'] == 'Main Slate']
121
+ dk_roo_raw['STDev'] = dk_roo_raw['Median'] / 4
122
+ dk_raw = dk_roo_raw.dropna(subset=['Median'])
123
+
124
+ fd_roo_raw = load_display[load_display['site'] == 'Fanduel']
125
+ fd_roo_raw = fd_roo_raw[fd_roo_raw['slate'] == 'Main Slate']
126
+ fd_roo_raw['STDev'] = fd_roo_raw['Median'] / 4
127
+ fd_raw = fd_roo_raw.dropna(subset=['Median'])
128
+
129
+ dk_secondary_roo_raw = load_display[load_display['site'] == 'Draftkings']
130
+ dk_secondary_roo_raw = dk_secondary_roo_raw[dk_secondary_roo_raw['slate'] == 'Secondary Slate']
131
+ dk_secondary_roo_raw['STDev'] = dk_secondary_roo_raw['Median'] / 4
132
+ dk_secondary = dk_secondary_roo_raw.dropna(subset=['Median'])
133
+
134
+ fd_secondary_roo_raw = load_display[load_display['site'] == 'Fanduel']
135
+ fd_secondary_roo_raw = fd_secondary_roo_raw[fd_secondary_roo_raw['slate'] == 'Secondary Slate']
136
+ fd_secondary_roo_raw['STDev'] = fd_secondary_roo_raw['Median'] / 4
137
+ fd_secondary = fd_secondary_roo_raw.dropna(subset=['Median'])
138
+
139
+ return dk_raw, fd_raw, dk_secondary, fd_secondary
140
+
141
+ @st.cache_data
142
+ def convert_df(array):
143
+ array = pd.DataFrame(array, columns=column_names)
144
+ return array.to_csv().encode('utf-8')
145
+
146
+ @st.cache_data
147
+ def calculate_DK_value_frequencies(np_array):
148
+ unique, counts = np.unique(np_array[:, :8], return_counts=True)
149
+ frequencies = counts / len(np_array) # Normalize by the number of rows
150
+ combined_array = np.column_stack((unique, frequencies))
151
+ return combined_array
152
+
153
+ @st.cache_data
154
+ def calculate_FD_value_frequencies(np_array):
155
+ unique, counts = np.unique(np_array[:, :9], return_counts=True)
156
+ frequencies = counts / len(np_array) # Normalize by the number of rows
157
+ combined_array = np.column_stack((unique, frequencies))
158
+ return combined_array
159
+
160
+ @st.cache_data
161
+ def sim_contest(Sim_size, seed_frame, maps_dict, Contest_Size):
162
+ SimVar = 1
163
+ Sim_Winners = []
164
+
165
+ # Pre-vectorize functions
166
+ vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
167
+ vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
168
+
169
+ st.write('Simulating contest on frames')
170
+
171
+ while SimVar <= Sim_size:
172
+ fp_random = seed_frame[np.random.choice(seed_frame.shape[0], Contest_Size)]
173
+
174
+ sample_arrays1 = np.c_[
175
+ fp_random,
176
+ np.sum(np.random.normal(
177
+ loc=vec_projection_map(fp_random[:, :-7]),
178
+ scale=vec_stdev_map(fp_random[:, :-7])),
179
+ axis=1)
180
+ ]
181
+
182
+ sample_arrays = sample_arrays1
183
+ if sim_site_var1 == 'Draftkings':
184
+ final_array = sample_arrays[sample_arrays[:, 9].argsort()[::-1]]
185
+ elif sim_site_var1 == 'Fanduel':
186
+ final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
187
+ best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
188
+ Sim_Winners.append(best_lineup)
189
+ SimVar += 1
190
+
191
+ return Sim_Winners
192
+
193
+ dk_raw, fd_raw, dk_secondary, fd_secondary = init_baselines()
194
+ dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
195
+ fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
196
+
197
+ tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
198
+
199
+ with tab2:
200
+ col1, col2 = st.columns([1, 7])
201
+ with col1:
202
+ if st.button("Load/Reset Data", key='reset1'):
203
+ st.cache_data.clear()
204
+ for key in st.session_state.keys():
205
+ del st.session_state[key]
206
+ DK_seed = init_DK_seed_frames(10000)
207
+ FD_seed = init_FD_seed_frames(10000)
208
+ DK_secondary = init_DK_secondary_seed_frames(10000)
209
+ FD_secondary = init_FD_secondary_seed_frames(10000)
210
+ dk_raw, fd_raw, dk_secondary, fd_secondary = init_baselines()
211
+ dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
212
+ fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
213
+
214
+ slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate'), key='slate_var1')
215
+ site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
216
+ sharp_split_var = st.number_input("How many lineups do you want?", value=10000, max_value=500000, min_value=10000, step=10000)
217
+ lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=500, value=10, step=1)
218
+
219
+ if site_var1 == 'Draftkings':
220
+
221
+ player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
222
+ if player_var1 == 'Specific Players':
223
+ player_var2 = st.multiselect('Which players do you want?', options = dk_raw['Player'].unique())
224
+ elif player_var1 == 'Full Slate':
225
+ player_var2 = dk_raw.Player.values.tolist()
226
+
227
+ raw_baselines = dk_raw
228
+ column_names = dk_columns
229
+
230
+ elif site_var1 == 'Fanduel':
231
+
232
+ player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
233
+ if player_var1 == 'Specific Players':
234
+ player_var2 = st.multiselect('Which players do you want?', options = fd_raw['Player'].unique())
235
+ elif player_var1 == 'Full Slate':
236
+ player_var2 = fd_raw.Player.values.tolist()
237
+
238
+ raw_baselines = fd_raw
239
+ column_names = fd_columns
240
+
241
+ if st.button("Prepare data export", key='data_export'):
242
+ if site_var1 == 'Draftkings':
243
+ if 'working_seed' in st.session_state:
244
+ st.session_state.working_seed = st.session_state.working_seed
245
+ if player_var1 == 'Specific Players':
246
+ st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
247
+ st.session_state.data_export_display = st.session_state.working_seed[0:lineup_num_var]
248
+ export_column_var = 8
249
+ elif 'working_seed' not in st.session_state:
250
+ if slate_var1 == 'Main Slate':
251
+ st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
252
+ dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
253
+
254
+ raw_baselines = dk_raw
255
+ column_names = dk_columns
256
+ elif slate_var1 == 'Secondary Slate':
257
+ st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split_var)
258
+ dk_id_dict = dict(zip(dk_secondary.Player, dk_secondary.player_id))
259
+
260
+ raw_baselines = dk_secondary
261
+ column_names = dk_columns
262
+
263
+ if player_var1 == 'Specific Players':
264
+ st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
265
+ st.session_state.data_export_display = st.session_state.working_seed[0:lineup_num_var]
266
+ export_column_var = 8
267
+ data_export = st.session_state.data_export_display.copy()
268
+ for col in range(export_column_var):
269
+ data_export[:, col] = np.array([dk_id_dict.get(x, x) for x in data_export[:, col]])
270
+
271
+ elif site_var1 == 'Fanduel':
272
+ if 'working_seed' in st.session_state:
273
+ st.session_state.working_seed = st.session_state.working_seed
274
+ if player_var1 == 'Specific Players':
275
+ st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
276
+ st.session_state.data_export_display = st.session_state.working_seed[0:lineup_num_var]
277
+ export_column_var = 9
278
+ elif 'working_seed' not in st.session_state:
279
+ if slate_var1 == 'Main Slate':
280
+ st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
281
+ fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
282
+
283
+ raw_baselines = fd_raw
284
+ column_names = fd_columns
285
+ elif slate_var1 == 'Secondary Slate':
286
+ st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split_var)
287
+ fd_id_dict = dict(zip(fd_secondary.Player, fd_secondary.player_id))
288
+
289
+ raw_baselines = fd_secondary
290
+ column_names = fd_columns
291
+
292
+ if player_var1 == 'Specific Players':
293
+ st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
294
+ st.session_state.data_export_display = st.session_state.working_seed[0:lineup_num_var]
295
+ export_column_var = 9
296
+ data_export = st.session_state.data_export_display.copy()
297
+ for col in range(export_column_var):
298
+ data_export[:, col] = np.array([fd_id_dict.get(x, x) for x in fd_id_dict[:, col]])
299
+ st.download_button(
300
+ label="Export optimals set",
301
+ data=convert_df(data_export),
302
+ file_name='NBA_optimals_export.csv',
303
+ mime='text/csv',
304
+ )
305
+
306
+ with col2:
307
+ if st.button("Load Data", key='load_data'):
308
+ if site_var1 == 'Draftkings':
309
+ if 'working_seed' in st.session_state:
310
+ st.session_state.working_seed = st.session_state.working_seed
311
+ if player_var1 == 'Specific Players':
312
+ st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
313
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
314
+ elif 'working_seed' not in st.session_state:
315
+ if slate_var1 == 'Main Slate':
316
+ st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
317
+ dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
318
+
319
+ raw_baselines = dk_raw
320
+ column_names = dk_columns
321
+ elif slate_var1 == 'Secondary Slate':
322
+ st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split_var)
323
+ dk_id_dict = dict(zip(dk_secondary.Player, dk_secondary.player_id))
324
+
325
+ raw_baselines = dk_secondary
326
+ column_names = dk_columns
327
+
328
+ if player_var1 == 'Specific Players':
329
+ st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
330
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
331
+
332
+ elif site_var1 == 'Fanduel':
333
+ if 'working_seed' in st.session_state:
334
+ st.session_state.working_seed = st.session_state.working_seed
335
+ if player_var1 == 'Specific Players':
336
+ st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
337
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
338
+ elif 'working_seed' not in st.session_state:
339
+ if slate_var1 == 'Main Slate':
340
+ st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
341
+ fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
342
+
343
+ raw_baselines = fd_raw
344
+ column_names = fd_columns
345
+ elif slate_var1 == 'Secondary Slate':
346
+ st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split_var)
347
+ fd_id_dict = dict(zip(fd_secondary.Player, fd_secondary.player_id))
348
+
349
+ raw_baselines = fd_secondary
350
+ column_names = fd_columns
351
+
352
+ if player_var1 == 'Specific Players':
353
+ st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
354
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
355
+
356
+ if 'data_export_display' in st.session_state:
357
+ st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)
358
+
359
+ with tab1:
360
+ col1, col2 = st.columns([1, 7])
361
+ with col1:
362
+ if st.button("Load/Reset Data", key='reset2'):
363
+ st.cache_data.clear()
364
+ for key in st.session_state.keys():
365
+ del st.session_state[key]
366
+ DK_seed = init_DK_seed_frames(10000)
367
+ FD_seed = init_FD_seed_frames(10000)
368
+ DK_secondary = init_DK_secondary_seed_frames(10000)
369
+ FD_secondary = init_FD_secondary_seed_frames(10000)
370
+ dk_raw, fd_raw, dk_secondary, fd_secondary = init_baselines()
371
+ dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
372
+ fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
373
+
374
+ sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate'), key='sim_slate_var1')
375
+ sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
376
+
377
+ contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
378
+ if contest_var1 == 'Small':
379
+ Contest_Size = 1000
380
+ elif contest_var1 == 'Medium':
381
+ Contest_Size = 5000
382
+ elif contest_var1 == 'Large':
383
+ Contest_Size = 10000
384
+ elif contest_var1 == 'Custom':
385
+ Contest_Size = st.number_input("Insert contest size", value=100, min_value=100, max_value=100000, step=50)
386
+ strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very'))
387
+ if strength_var1 == 'Not Very':
388
+ sharp_split = 5000000
389
+ elif strength_var1 == 'Below Average':
390
+ sharp_split = 2500000
391
+ elif strength_var1 == 'Average':
392
+ sharp_split = 100000
393
+ elif strength_var1 == 'Above Average':
394
+ sharp_split = 50000
395
+ elif strength_var1 == 'Very':
396
+ sharp_split = 10000
397
+
398
+
399
+ with col2:
400
+ if st.button("Run Contest Sim"):
401
+ if 'working_seed' in st.session_state:
402
+ st.session_state.maps_dict = {
403
+ 'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
404
+ 'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
405
+ 'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
406
+ 'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
407
+ 'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
408
+ 'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
409
+ }
410
+ Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size)
411
+ Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
412
+
413
+ # Initial setup
414
+ Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
415
+ Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
416
+ Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
417
+ Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
418
+
419
+ # Type Casting
420
+ type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
421
+ Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
422
+
423
+ # Sorting
424
+ st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
425
+ st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
426
+
427
+ # Data Copying
428
+ st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
429
+
430
+ # Data Copying
431
+ st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
432
+
433
+ else:
434
+ if sim_site_var1 == 'Draftkings':
435
+ if sim_slate_var1 == 'Main Slate':
436
+ st.session_state.working_seed = init_DK_seed_frames(sharp_split)
437
+ dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
438
+ raw_baselines = dk_raw
439
+ column_names = dk_columns
440
+ elif sim_slate_var1 == 'Secondary Slate':
441
+ st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split)
442
+ dk_id_dict = dict(zip(dk_secondary.Player, dk_secondary.player_id))
443
+ raw_baselines = dk_secondary
444
+ column_names = dk_columns
445
+
446
+ elif sim_site_var1 == 'Fanduel':
447
+ if sim_slate_var1 == 'Main Slate':
448
+ st.session_state.working_seed = init_FD_seed_frames(sharp_split)
449
+ fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
450
+ raw_baselines = fd_raw
451
+ column_names = fd_columns
452
+ elif sim_slate_var1 == 'Secondary Slate':
453
+ st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split)
454
+ fd_id_dict = dict(zip(fd_secondary.Player, fd_secondary.player_id))
455
+ raw_baselines = fd_secondary
456
+ column_names = fd_columns
457
+
458
+ st.session_state.maps_dict = {
459
+ 'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
460
+ 'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
461
+ 'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
462
+ 'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
463
+ 'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
464
+ 'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
465
+ }
466
+ Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size)
467
+ Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
468
+
469
+ # Initial setup
470
+ Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
471
+ Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
472
+ Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
473
+ Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
474
+
475
+ # Type Casting
476
+ type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
477
+ Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
478
+
479
+ # Sorting
480
+ st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
481
+ st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
482
+
483
+ # Data Copying
484
+ st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
485
+
486
+ # Data Copying
487
+ st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
488
+ st.session_state.freq_copy = st.session_state.Sim_Winner_Display
489
+
490
+ if sim_site_var1 == 'Draftkings':
491
+ freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:8].values, return_counts=True)),
492
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
493
+ elif sim_site_var1 == 'Fanduel':
494
+ freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)),
495
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
496
+ freq_working['Freq'] = freq_working['Freq'].astype(int)
497
+ freq_working['Position'] = freq_working['Player'].map(st.session_state.maps_dict['Pos_map'])
498
+ freq_working['Salary'] = freq_working['Player'].map(st.session_state.maps_dict['Salary_map'])
499
+ freq_working['Proj Own'] = freq_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
500
+ freq_working['Exposure'] = freq_working['Freq']/(1000)
501
+ freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own']
502
+ freq_working['Team'] = freq_working['Player'].map(st.session_state.maps_dict['Team_map'])
503
+ st.session_state.player_freq = freq_working.copy()
504
+
505
+ if sim_site_var1 == 'Draftkings':
506
+ pg_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:1].values, return_counts=True)),
507
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
508
+ elif sim_site_var1 == 'Fanduel':
509
+ pg_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:2].values, return_counts=True)),
510
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
511
+ pg_working['Freq'] = pg_working['Freq'].astype(int)
512
+ pg_working['Position'] = pg_working['Player'].map(st.session_state.maps_dict['Pos_map'])
513
+ pg_working['Salary'] = pg_working['Player'].map(st.session_state.maps_dict['Salary_map'])
514
+ pg_working['Proj Own'] = pg_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
515
+ pg_working['Exposure'] = pg_working['Freq']/(1000)
516
+ pg_working['Edge'] = pg_working['Exposure'] - pg_working['Proj Own']
517
+ pg_working['Team'] = pg_working['Player'].map(st.session_state.maps_dict['Team_map'])
518
+ st.session_state.pg_freq = pg_working.copy()
519
+
520
+ if sim_site_var1 == 'Draftkings':
521
+ sg_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,1:2].values, return_counts=True)),
522
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
523
+ elif sim_site_var1 == 'Fanduel':
524
+ sg_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,2:4].values, return_counts=True)),
525
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
526
+ sg_working['Freq'] = sg_working['Freq'].astype(int)
527
+ sg_working['Position'] = sg_working['Player'].map(st.session_state.maps_dict['Pos_map'])
528
+ sg_working['Salary'] = sg_working['Player'].map(st.session_state.maps_dict['Salary_map'])
529
+ sg_working['Proj Own'] = sg_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
530
+ sg_working['Exposure'] = sg_working['Freq']/(1000)
531
+ sg_working['Edge'] = sg_working['Exposure'] - sg_working['Proj Own']
532
+ sg_working['Team'] = sg_working['Player'].map(st.session_state.maps_dict['Team_map'])
533
+ st.session_state.sg_freq = sg_working.copy()
534
+
535
+ if sim_site_var1 == 'Draftkings':
536
+ sf_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,2:3].values, return_counts=True)),
537
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
538
+ elif sim_site_var1 == 'Fanduel':
539
+ sf_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,4:6].values, return_counts=True)),
540
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
541
+ sf_working['Freq'] = sf_working['Freq'].astype(int)
542
+ sf_working['Position'] = sf_working['Player'].map(st.session_state.maps_dict['Pos_map'])
543
+ sf_working['Salary'] = sf_working['Player'].map(st.session_state.maps_dict['Salary_map'])
544
+ sf_working['Proj Own'] = sf_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
545
+ sf_working['Exposure'] = sf_working['Freq']/(1000)
546
+ sf_working['Edge'] = sf_working['Exposure'] - sf_working['Proj Own']
547
+ sf_working['Team'] = sf_working['Player'].map(st.session_state.maps_dict['Team_map'])
548
+ st.session_state.sf_freq = sf_working.copy()
549
+
550
+ if sim_site_var1 == 'Draftkings':
551
+ pf_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,3:4].values, return_counts=True)),
552
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
553
+ elif sim_site_var1 == 'Fanduel':
554
+ pf_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,6:8].values, return_counts=True)),
555
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
556
+ pf_working['Freq'] = pf_working['Freq'].astype(int)
557
+ pf_working['Position'] = pf_working['Player'].map(st.session_state.maps_dict['Pos_map'])
558
+ pf_working['Salary'] = pf_working['Player'].map(st.session_state.maps_dict['Salary_map'])
559
+ pf_working['Proj Own'] = pf_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
560
+ pf_working['Exposure'] = pf_working['Freq']/(1000)
561
+ pf_working['Edge'] = pf_working['Exposure'] - pf_working['Proj Own']
562
+ pf_working['Team'] = pf_working['Player'].map(st.session_state.maps_dict['Team_map'])
563
+ st.session_state.pf_freq = pf_working.copy()
564
+
565
+ if sim_site_var1 == 'Draftkings':
566
+ c_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,4:5].values, return_counts=True)),
567
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
568
+ elif sim_site_var1 == 'Fanduel':
569
+ c_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,8:9].values, return_counts=True)),
570
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
571
+ c_working['Freq'] = c_working['Freq'].astype(int)
572
+ c_working['Position'] = c_working['Player'].map(st.session_state.maps_dict['Pos_map'])
573
+ c_working['Salary'] = c_working['Player'].map(st.session_state.maps_dict['Salary_map'])
574
+ c_working['Proj Own'] = c_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
575
+ c_working['Exposure'] = c_working['Freq']/(1000)
576
+ c_working['Edge'] = c_working['Exposure'] - c_working['Proj Own']
577
+ c_working['Team'] = c_working['Player'].map(st.session_state.maps_dict['Team_map'])
578
+ st.session_state.c_freq = c_working.copy()
579
+
580
+ if sim_site_var1 == 'Draftkings':
581
+ g_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,5:6].values, return_counts=True)),
582
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
583
+ elif sim_site_var1 == 'Fanduel':
584
+ g_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:4].values, return_counts=True)),
585
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
586
+ g_working['Freq'] = g_working['Freq'].astype(int)
587
+ g_working['Position'] = g_working['Player'].map(st.session_state.maps_dict['Pos_map'])
588
+ g_working['Salary'] = g_working['Player'].map(st.session_state.maps_dict['Salary_map'])
589
+ g_working['Proj Own'] = g_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
590
+ g_working['Exposure'] = g_working['Freq']/(1000)
591
+ g_working['Edge'] = g_working['Exposure'] - g_working['Proj Own']
592
+ g_working['Team'] = g_working['Player'].map(st.session_state.maps_dict['Team_map'])
593
+ st.session_state.g_freq = g_working.copy()
594
+
595
+ if sim_site_var1 == 'Draftkings':
596
+ f_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,6:7].values, return_counts=True)),
597
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
598
+ elif sim_site_var1 == 'Fanduel':
599
+ f_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,4:8].values, return_counts=True)),
600
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
601
+ f_working['Freq'] = f_working['Freq'].astype(int)
602
+ f_working['Position'] = f_working['Player'].map(st.session_state.maps_dict['Pos_map'])
603
+ f_working['Salary'] = f_working['Player'].map(st.session_state.maps_dict['Salary_map'])
604
+ f_working['Proj Own'] = f_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
605
+ f_working['Exposure'] = f_working['Freq']/(1000)
606
+ f_working['Edge'] = f_working['Exposure'] - f_working['Proj Own']
607
+ f_working['Team'] = f_working['Player'].map(st.session_state.maps_dict['Team_map'])
608
+ st.session_state.f_freq = f_working.copy()
609
+
610
+ if sim_site_var1 == 'Draftkings':
611
+ flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,7:8].values, return_counts=True)),
612
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
613
+ elif sim_site_var1 == 'Fanduel':
614
+ flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)),
615
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
616
+ flex_working['Freq'] = flex_working['Freq'].astype(int)
617
+ flex_working['Position'] = flex_working['Player'].map(st.session_state.maps_dict['Pos_map'])
618
+ flex_working['Salary'] = flex_working['Player'].map(st.session_state.maps_dict['Salary_map'])
619
+ flex_working['Proj Own'] = flex_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
620
+ flex_working['Exposure'] = flex_working['Freq']/(1000)
621
+ flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own']
622
+ flex_working['Team'] = flex_working['Player'].map(st.session_state.maps_dict['Team_map'])
623
+ st.session_state.flex_freq = flex_working.copy()
624
+
625
+ if sim_site_var1 == 'Draftkings':
626
+ team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,10:11].values, return_counts=True)),
627
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
628
+ elif sim_site_var1 == 'Fanduel':
629
+ team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,11:12].values, return_counts=True)),
630
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
631
+ team_working['Freq'] = team_working['Freq'].astype(int)
632
+ team_working['Exposure'] = team_working['Freq']/(1000)
633
+ st.session_state.team_freq = team_working.copy()
634
+
635
+ with st.container():
636
+ if st.button("Reset Sim", key='reset_sim'):
637
+ for key in st.session_state.keys():
638
+ del st.session_state[key]
639
+ if 'player_freq' in st.session_state:
640
+ player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
641
+ if player_split_var2 == 'Specific Players':
642
+ find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique())
643
+ elif player_split_var2 == 'Full Players':
644
+ find_var2 = st.session_state.player_freq.Player.values.tolist()
645
+
646
+ if player_split_var2 == 'Specific Players':
647
+ st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)]
648
+ if player_split_var2 == 'Full Players':
649
+ st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
650
+ if 'Sim_Winner_Display' in st.session_state:
651
+ st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
652
+ if 'Sim_Winner_Export' in st.session_state:
653
+ st.download_button(
654
+ label="Export Full Frame",
655
+ data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
656
+ file_name='MLB_consim_export.csv',
657
+ mime='text/csv',
658
+ )
659
+ tab1, tab2 = st.tabs(['Winning Frame Statistics', 'Flex Exposure Statistics'])
660
+
661
+ with tab1:
662
+ if 'Sim_Winner_Display' in st.session_state:
663
+ # Create a new dataframe with summary statistics
664
+ summary_df = pd.DataFrame({
665
+ 'Metric': ['Min', 'Average', 'Max', 'STDdev'],
666
+ 'Salary': [
667
+ st.session_state.Sim_Winner_Display['salary'].min(),
668
+ st.session_state.Sim_Winner_Display['salary'].mean(),
669
+ st.session_state.Sim_Winner_Display['salary'].max(),
670
+ st.session_state.Sim_Winner_Display['salary'].std()
671
+ ],
672
+ 'Proj': [
673
+ st.session_state.Sim_Winner_Display['proj'].min(),
674
+ st.session_state.Sim_Winner_Display['proj'].mean(),
675
+ st.session_state.Sim_Winner_Display['proj'].max(),
676
+ st.session_state.Sim_Winner_Display['proj'].std()
677
+ ],
678
+ 'Own': [
679
+ st.session_state.Sim_Winner_Display['Own'].min(),
680
+ st.session_state.Sim_Winner_Display['Own'].mean(),
681
+ st.session_state.Sim_Winner_Display['Own'].max(),
682
+ st.session_state.Sim_Winner_Display['Own'].std()
683
+ ],
684
+ 'Fantasy': [
685
+ st.session_state.Sim_Winner_Display['Fantasy'].min(),
686
+ st.session_state.Sim_Winner_Display['Fantasy'].mean(),
687
+ st.session_state.Sim_Winner_Display['Fantasy'].max(),
688
+ st.session_state.Sim_Winner_Display['Fantasy'].std()
689
+ ],
690
+ 'GPP_Proj': [
691
+ st.session_state.Sim_Winner_Display['GPP_Proj'].min(),
692
+ st.session_state.Sim_Winner_Display['GPP_Proj'].mean(),
693
+ st.session_state.Sim_Winner_Display['GPP_Proj'].max(),
694
+ st.session_state.Sim_Winner_Display['GPP_Proj'].std()
695
+ ]
696
+ })
697
+
698
+ # Set the index of the summary dataframe as the "Metric" column
699
+ summary_df = summary_df.set_index('Metric')
700
+
701
+ # Display the summary dataframe
702
+ st.subheader("Winning Frame Statistics")
703
+ st.dataframe(summary_df.style.format({
704
+ 'Salary': '{:.2f}',
705
+ 'Proj': '{:.2f}',
706
+ 'Fantasy': '{:.2f}',
707
+ 'GPP_Proj': '{:.2f}'
708
+ }).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own', 'Fantasy', 'GPP_Proj']), use_container_width=True)
709
+
710
+ with tab2:
711
+ if 'Sim_Winner_Display' in st.session_state:
712
+ st.write("Yeah man that's crazy")
713
+
714
+ else:
715
+ st.write("Simulation data or position mapping not available.")
716
+ with st.container():
717
+ tab1, tab2 = st.tabs(['Overall Exposures', 'Team Exposures'])
718
+ with tab1:
719
+ if 'player_freq' in st.session_state:
720
+
721
+ st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
722
+ st.download_button(
723
+ label="Export Exposures",
724
+ data=st.session_state.player_freq.to_csv().encode('utf-8'),
725
+ file_name='player_freq_export.csv',
726
+ mime='text/csv',
727
+ key='overall'
728
+ )
729
+
730
+ with tab2:
731
+ if 'team_freq' in st.session_state:
732
+
733
+ st.dataframe(st.session_state.team_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
734
+ st.download_button(
735
+ label="Export Exposures",
736
+ data=st.session_state.team_freq.to_csv().encode('utf-8'),
737
+ file_name='team_freq.csv',
738
+ mime='text/csv',
739
+ key='team'
740
+ )
app.yaml ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ runtime: python
2
+ env: flex
3
+
4
+ runtime_config:
5
+ python_version: 3
6
+
7
+ entrypoint: streamlit run streamlit-app.py --server.port $PORT
8
+
9
+ automatic_scaling:
10
+ max_num_instances: 1000
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ streamlit
2
+ gspread
3
+ openpyxl
4
+ matplotlib
5
+ pymongo
6
+ pulp
7
+ docker
8
+ plotly
9
+ scipy
10
+ polars