James McCool
commited on
Commit
·
c7f5fcd
1
Parent(s):
a63c15d
Add Streamlit NBA DFS simulation app with MongoDB integration
Browse files- app.py +740 -0
- app.yaml +10 -0
- requirements.txt +10 -0
app.py
ADDED
|
@@ -0,0 +1,740 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
st.set_page_config(layout="wide")
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import pymongo
|
| 6 |
+
import time
|
| 7 |
+
|
| 8 |
+
@st.cache_resource
|
| 9 |
+
def init_conn():
|
| 10 |
+
|
| 11 |
+
uri = st.secrets['mongo_uri']
|
| 12 |
+
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
|
| 13 |
+
db = client["NBA_DFS"]
|
| 14 |
+
|
| 15 |
+
return db
|
| 16 |
+
|
| 17 |
+
db = init_conn()
|
| 18 |
+
|
| 19 |
+
percentages_format = {'Exposure': '{:.2%}'}
|
| 20 |
+
freq_format = {'Proj Own': '{:.2%}', 'Exposure': '{:.2%}', 'Edge': '{:.2%}'}
|
| 21 |
+
dk_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
| 22 |
+
fd_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
| 23 |
+
|
| 24 |
+
@st.cache_data(ttl = 60)
|
| 25 |
+
def init_DK_seed_frames(load_size):
|
| 26 |
+
|
| 27 |
+
collection = db['DK_NBA_name_map']
|
| 28 |
+
cursor = collection.find()
|
| 29 |
+
raw_data = pd.DataFrame(list(cursor))
|
| 30 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
| 31 |
+
|
| 32 |
+
collection = db["DK_NBA_seed_frame"]
|
| 33 |
+
cursor = collection.find().limit(load_size)
|
| 34 |
+
|
| 35 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 36 |
+
raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
| 37 |
+
dict_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX']
|
| 38 |
+
st.write("converting names")
|
| 39 |
+
for col in dict_columns:
|
| 40 |
+
raw_display[col] = raw_display[col].map(names_dict)
|
| 41 |
+
DK_seed = raw_display.to_numpy()
|
| 42 |
+
|
| 43 |
+
return DK_seed
|
| 44 |
+
|
| 45 |
+
@st.cache_data(ttl = 60)
|
| 46 |
+
def init_DK_secondary_seed_frames(load_size):
|
| 47 |
+
|
| 48 |
+
collection = db['DK_NBA_Secondary_name_map']
|
| 49 |
+
cursor = collection.find()
|
| 50 |
+
raw_data = pd.DataFrame(list(cursor))
|
| 51 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
| 52 |
+
|
| 53 |
+
collection = db["DK_NBA_Secondary_seed_frame"]
|
| 54 |
+
cursor = collection.find().limit(load_size)
|
| 55 |
+
|
| 56 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 57 |
+
raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
| 58 |
+
dict_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX']
|
| 59 |
+
st.write("converting names")
|
| 60 |
+
for col in dict_columns:
|
| 61 |
+
raw_display[col] = raw_display[col].map(names_dict)
|
| 62 |
+
DK_seed = raw_display.to_numpy()
|
| 63 |
+
|
| 64 |
+
return DK_seed
|
| 65 |
+
|
| 66 |
+
@st.cache_data(ttl = 60)
|
| 67 |
+
def init_FD_seed_frames(load_size):
|
| 68 |
+
|
| 69 |
+
collection = db['FD_NBA_name_map']
|
| 70 |
+
cursor = collection.find()
|
| 71 |
+
raw_data = pd.DataFrame(list(cursor))
|
| 72 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
| 73 |
+
|
| 74 |
+
collection = db["FD_NBA_seed_frame"]
|
| 75 |
+
cursor = collection.find().limit(load_size)
|
| 76 |
+
|
| 77 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 78 |
+
raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
| 79 |
+
dict_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1']
|
| 80 |
+
st.write("converting names")
|
| 81 |
+
for col in dict_columns:
|
| 82 |
+
raw_display[col] = raw_display[col].map(names_dict)
|
| 83 |
+
FD_seed = raw_display.to_numpy()
|
| 84 |
+
|
| 85 |
+
return FD_seed
|
| 86 |
+
|
| 87 |
+
@st.cache_data(ttl = 60)
|
| 88 |
+
def init_FD_secondary_seed_frames(load_size):
|
| 89 |
+
|
| 90 |
+
collection = db['FD_NBA_Secondary_name_map']
|
| 91 |
+
cursor = collection.find()
|
| 92 |
+
raw_data = pd.DataFrame(list(cursor))
|
| 93 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
| 94 |
+
|
| 95 |
+
collection = db["FD_NBA_Secondary_seed_frame"]
|
| 96 |
+
cursor = collection.find().limit(load_size)
|
| 97 |
+
|
| 98 |
+
raw_display = pd.DataFrame(list(cursor))
|
| 99 |
+
raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
| 100 |
+
dict_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1']
|
| 101 |
+
st.write("converting names")
|
| 102 |
+
for col in dict_columns:
|
| 103 |
+
raw_display[col] = raw_display[col].map(names_dict)
|
| 104 |
+
FD_seed = raw_display.to_numpy()
|
| 105 |
+
|
| 106 |
+
return FD_seed
|
| 107 |
+
|
| 108 |
+
@st.cache_resource(ttl = 60)
|
| 109 |
+
def init_baselines():
|
| 110 |
+
collection = db["Player_Range_Of_Outcomes"]
|
| 111 |
+
cursor = collection.find()
|
| 112 |
+
|
| 113 |
+
load_display = pd.DataFrame(list(cursor))
|
| 114 |
+
|
| 115 |
+
load_display.replace('', np.nan, inplace=True)
|
| 116 |
+
load_display.rename(columns={"Fantasy": "Median", 'Name': 'Player', 'player_ID': 'player_id'}, inplace = True)
|
| 117 |
+
load_display = load_display[load_display['Median'] > 0]
|
| 118 |
+
|
| 119 |
+
dk_roo_raw = load_display[load_display['site'] == 'Draftkings']
|
| 120 |
+
dk_roo_raw = dk_roo_raw[dk_roo_raw['slate'] == 'Main Slate']
|
| 121 |
+
dk_roo_raw['STDev'] = dk_roo_raw['Median'] / 4
|
| 122 |
+
dk_raw = dk_roo_raw.dropna(subset=['Median'])
|
| 123 |
+
|
| 124 |
+
fd_roo_raw = load_display[load_display['site'] == 'Fanduel']
|
| 125 |
+
fd_roo_raw = fd_roo_raw[fd_roo_raw['slate'] == 'Main Slate']
|
| 126 |
+
fd_roo_raw['STDev'] = fd_roo_raw['Median'] / 4
|
| 127 |
+
fd_raw = fd_roo_raw.dropna(subset=['Median'])
|
| 128 |
+
|
| 129 |
+
dk_secondary_roo_raw = load_display[load_display['site'] == 'Draftkings']
|
| 130 |
+
dk_secondary_roo_raw = dk_secondary_roo_raw[dk_secondary_roo_raw['slate'] == 'Secondary Slate']
|
| 131 |
+
dk_secondary_roo_raw['STDev'] = dk_secondary_roo_raw['Median'] / 4
|
| 132 |
+
dk_secondary = dk_secondary_roo_raw.dropna(subset=['Median'])
|
| 133 |
+
|
| 134 |
+
fd_secondary_roo_raw = load_display[load_display['site'] == 'Fanduel']
|
| 135 |
+
fd_secondary_roo_raw = fd_secondary_roo_raw[fd_secondary_roo_raw['slate'] == 'Secondary Slate']
|
| 136 |
+
fd_secondary_roo_raw['STDev'] = fd_secondary_roo_raw['Median'] / 4
|
| 137 |
+
fd_secondary = fd_secondary_roo_raw.dropna(subset=['Median'])
|
| 138 |
+
|
| 139 |
+
return dk_raw, fd_raw, dk_secondary, fd_secondary
|
| 140 |
+
|
| 141 |
+
@st.cache_data
|
| 142 |
+
def convert_df(array):
|
| 143 |
+
array = pd.DataFrame(array, columns=column_names)
|
| 144 |
+
return array.to_csv().encode('utf-8')
|
| 145 |
+
|
| 146 |
+
@st.cache_data
|
| 147 |
+
def calculate_DK_value_frequencies(np_array):
|
| 148 |
+
unique, counts = np.unique(np_array[:, :8], return_counts=True)
|
| 149 |
+
frequencies = counts / len(np_array) # Normalize by the number of rows
|
| 150 |
+
combined_array = np.column_stack((unique, frequencies))
|
| 151 |
+
return combined_array
|
| 152 |
+
|
| 153 |
+
@st.cache_data
|
| 154 |
+
def calculate_FD_value_frequencies(np_array):
|
| 155 |
+
unique, counts = np.unique(np_array[:, :9], return_counts=True)
|
| 156 |
+
frequencies = counts / len(np_array) # Normalize by the number of rows
|
| 157 |
+
combined_array = np.column_stack((unique, frequencies))
|
| 158 |
+
return combined_array
|
| 159 |
+
|
| 160 |
+
@st.cache_data
|
| 161 |
+
def sim_contest(Sim_size, seed_frame, maps_dict, Contest_Size):
|
| 162 |
+
SimVar = 1
|
| 163 |
+
Sim_Winners = []
|
| 164 |
+
|
| 165 |
+
# Pre-vectorize functions
|
| 166 |
+
vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
|
| 167 |
+
vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
|
| 168 |
+
|
| 169 |
+
st.write('Simulating contest on frames')
|
| 170 |
+
|
| 171 |
+
while SimVar <= Sim_size:
|
| 172 |
+
fp_random = seed_frame[np.random.choice(seed_frame.shape[0], Contest_Size)]
|
| 173 |
+
|
| 174 |
+
sample_arrays1 = np.c_[
|
| 175 |
+
fp_random,
|
| 176 |
+
np.sum(np.random.normal(
|
| 177 |
+
loc=vec_projection_map(fp_random[:, :-7]),
|
| 178 |
+
scale=vec_stdev_map(fp_random[:, :-7])),
|
| 179 |
+
axis=1)
|
| 180 |
+
]
|
| 181 |
+
|
| 182 |
+
sample_arrays = sample_arrays1
|
| 183 |
+
if sim_site_var1 == 'Draftkings':
|
| 184 |
+
final_array = sample_arrays[sample_arrays[:, 9].argsort()[::-1]]
|
| 185 |
+
elif sim_site_var1 == 'Fanduel':
|
| 186 |
+
final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
|
| 187 |
+
best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
|
| 188 |
+
Sim_Winners.append(best_lineup)
|
| 189 |
+
SimVar += 1
|
| 190 |
+
|
| 191 |
+
return Sim_Winners
|
| 192 |
+
|
| 193 |
+
dk_raw, fd_raw, dk_secondary, fd_secondary = init_baselines()
|
| 194 |
+
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
| 195 |
+
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
| 196 |
+
|
| 197 |
+
tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
|
| 198 |
+
|
| 199 |
+
with tab2:
|
| 200 |
+
col1, col2 = st.columns([1, 7])
|
| 201 |
+
with col1:
|
| 202 |
+
if st.button("Load/Reset Data", key='reset1'):
|
| 203 |
+
st.cache_data.clear()
|
| 204 |
+
for key in st.session_state.keys():
|
| 205 |
+
del st.session_state[key]
|
| 206 |
+
DK_seed = init_DK_seed_frames(10000)
|
| 207 |
+
FD_seed = init_FD_seed_frames(10000)
|
| 208 |
+
DK_secondary = init_DK_secondary_seed_frames(10000)
|
| 209 |
+
FD_secondary = init_FD_secondary_seed_frames(10000)
|
| 210 |
+
dk_raw, fd_raw, dk_secondary, fd_secondary = init_baselines()
|
| 211 |
+
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
| 212 |
+
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
| 213 |
+
|
| 214 |
+
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate'), key='slate_var1')
|
| 215 |
+
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
|
| 216 |
+
sharp_split_var = st.number_input("How many lineups do you want?", value=10000, max_value=500000, min_value=10000, step=10000)
|
| 217 |
+
lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=500, value=10, step=1)
|
| 218 |
+
|
| 219 |
+
if site_var1 == 'Draftkings':
|
| 220 |
+
|
| 221 |
+
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
|
| 222 |
+
if player_var1 == 'Specific Players':
|
| 223 |
+
player_var2 = st.multiselect('Which players do you want?', options = dk_raw['Player'].unique())
|
| 224 |
+
elif player_var1 == 'Full Slate':
|
| 225 |
+
player_var2 = dk_raw.Player.values.tolist()
|
| 226 |
+
|
| 227 |
+
raw_baselines = dk_raw
|
| 228 |
+
column_names = dk_columns
|
| 229 |
+
|
| 230 |
+
elif site_var1 == 'Fanduel':
|
| 231 |
+
|
| 232 |
+
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
|
| 233 |
+
if player_var1 == 'Specific Players':
|
| 234 |
+
player_var2 = st.multiselect('Which players do you want?', options = fd_raw['Player'].unique())
|
| 235 |
+
elif player_var1 == 'Full Slate':
|
| 236 |
+
player_var2 = fd_raw.Player.values.tolist()
|
| 237 |
+
|
| 238 |
+
raw_baselines = fd_raw
|
| 239 |
+
column_names = fd_columns
|
| 240 |
+
|
| 241 |
+
if st.button("Prepare data export", key='data_export'):
|
| 242 |
+
if site_var1 == 'Draftkings':
|
| 243 |
+
if 'working_seed' in st.session_state:
|
| 244 |
+
st.session_state.working_seed = st.session_state.working_seed
|
| 245 |
+
if player_var1 == 'Specific Players':
|
| 246 |
+
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
|
| 247 |
+
st.session_state.data_export_display = st.session_state.working_seed[0:lineup_num_var]
|
| 248 |
+
export_column_var = 8
|
| 249 |
+
elif 'working_seed' not in st.session_state:
|
| 250 |
+
if slate_var1 == 'Main Slate':
|
| 251 |
+
st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
|
| 252 |
+
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
| 253 |
+
|
| 254 |
+
raw_baselines = dk_raw
|
| 255 |
+
column_names = dk_columns
|
| 256 |
+
elif slate_var1 == 'Secondary Slate':
|
| 257 |
+
st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split_var)
|
| 258 |
+
dk_id_dict = dict(zip(dk_secondary.Player, dk_secondary.player_id))
|
| 259 |
+
|
| 260 |
+
raw_baselines = dk_secondary
|
| 261 |
+
column_names = dk_columns
|
| 262 |
+
|
| 263 |
+
if player_var1 == 'Specific Players':
|
| 264 |
+
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
|
| 265 |
+
st.session_state.data_export_display = st.session_state.working_seed[0:lineup_num_var]
|
| 266 |
+
export_column_var = 8
|
| 267 |
+
data_export = st.session_state.data_export_display.copy()
|
| 268 |
+
for col in range(export_column_var):
|
| 269 |
+
data_export[:, col] = np.array([dk_id_dict.get(x, x) for x in data_export[:, col]])
|
| 270 |
+
|
| 271 |
+
elif site_var1 == 'Fanduel':
|
| 272 |
+
if 'working_seed' in st.session_state:
|
| 273 |
+
st.session_state.working_seed = st.session_state.working_seed
|
| 274 |
+
if player_var1 == 'Specific Players':
|
| 275 |
+
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
|
| 276 |
+
st.session_state.data_export_display = st.session_state.working_seed[0:lineup_num_var]
|
| 277 |
+
export_column_var = 9
|
| 278 |
+
elif 'working_seed' not in st.session_state:
|
| 279 |
+
if slate_var1 == 'Main Slate':
|
| 280 |
+
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
|
| 281 |
+
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
| 282 |
+
|
| 283 |
+
raw_baselines = fd_raw
|
| 284 |
+
column_names = fd_columns
|
| 285 |
+
elif slate_var1 == 'Secondary Slate':
|
| 286 |
+
st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split_var)
|
| 287 |
+
fd_id_dict = dict(zip(fd_secondary.Player, fd_secondary.player_id))
|
| 288 |
+
|
| 289 |
+
raw_baselines = fd_secondary
|
| 290 |
+
column_names = fd_columns
|
| 291 |
+
|
| 292 |
+
if player_var1 == 'Specific Players':
|
| 293 |
+
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
|
| 294 |
+
st.session_state.data_export_display = st.session_state.working_seed[0:lineup_num_var]
|
| 295 |
+
export_column_var = 9
|
| 296 |
+
data_export = st.session_state.data_export_display.copy()
|
| 297 |
+
for col in range(export_column_var):
|
| 298 |
+
data_export[:, col] = np.array([fd_id_dict.get(x, x) for x in fd_id_dict[:, col]])
|
| 299 |
+
st.download_button(
|
| 300 |
+
label="Export optimals set",
|
| 301 |
+
data=convert_df(data_export),
|
| 302 |
+
file_name='NBA_optimals_export.csv',
|
| 303 |
+
mime='text/csv',
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
with col2:
|
| 307 |
+
if st.button("Load Data", key='load_data'):
|
| 308 |
+
if site_var1 == 'Draftkings':
|
| 309 |
+
if 'working_seed' in st.session_state:
|
| 310 |
+
st.session_state.working_seed = st.session_state.working_seed
|
| 311 |
+
if player_var1 == 'Specific Players':
|
| 312 |
+
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
|
| 313 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
| 314 |
+
elif 'working_seed' not in st.session_state:
|
| 315 |
+
if slate_var1 == 'Main Slate':
|
| 316 |
+
st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
|
| 317 |
+
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
| 318 |
+
|
| 319 |
+
raw_baselines = dk_raw
|
| 320 |
+
column_names = dk_columns
|
| 321 |
+
elif slate_var1 == 'Secondary Slate':
|
| 322 |
+
st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split_var)
|
| 323 |
+
dk_id_dict = dict(zip(dk_secondary.Player, dk_secondary.player_id))
|
| 324 |
+
|
| 325 |
+
raw_baselines = dk_secondary
|
| 326 |
+
column_names = dk_columns
|
| 327 |
+
|
| 328 |
+
if player_var1 == 'Specific Players':
|
| 329 |
+
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
|
| 330 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
| 331 |
+
|
| 332 |
+
elif site_var1 == 'Fanduel':
|
| 333 |
+
if 'working_seed' in st.session_state:
|
| 334 |
+
st.session_state.working_seed = st.session_state.working_seed
|
| 335 |
+
if player_var1 == 'Specific Players':
|
| 336 |
+
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
|
| 337 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
| 338 |
+
elif 'working_seed' not in st.session_state:
|
| 339 |
+
if slate_var1 == 'Main Slate':
|
| 340 |
+
st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
|
| 341 |
+
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
| 342 |
+
|
| 343 |
+
raw_baselines = fd_raw
|
| 344 |
+
column_names = fd_columns
|
| 345 |
+
elif slate_var1 == 'Secondary Slate':
|
| 346 |
+
st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split_var)
|
| 347 |
+
fd_id_dict = dict(zip(fd_secondary.Player, fd_secondary.player_id))
|
| 348 |
+
|
| 349 |
+
raw_baselines = fd_secondary
|
| 350 |
+
column_names = fd_columns
|
| 351 |
+
|
| 352 |
+
if player_var1 == 'Specific Players':
|
| 353 |
+
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
|
| 354 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
| 355 |
+
|
| 356 |
+
if 'data_export_display' in st.session_state:
|
| 357 |
+
st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)
|
| 358 |
+
|
| 359 |
+
with tab1:
|
| 360 |
+
col1, col2 = st.columns([1, 7])
|
| 361 |
+
with col1:
|
| 362 |
+
if st.button("Load/Reset Data", key='reset2'):
|
| 363 |
+
st.cache_data.clear()
|
| 364 |
+
for key in st.session_state.keys():
|
| 365 |
+
del st.session_state[key]
|
| 366 |
+
DK_seed = init_DK_seed_frames(10000)
|
| 367 |
+
FD_seed = init_FD_seed_frames(10000)
|
| 368 |
+
DK_secondary = init_DK_secondary_seed_frames(10000)
|
| 369 |
+
FD_secondary = init_FD_secondary_seed_frames(10000)
|
| 370 |
+
dk_raw, fd_raw, dk_secondary, fd_secondary = init_baselines()
|
| 371 |
+
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
| 372 |
+
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
| 373 |
+
|
| 374 |
+
sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate'), key='sim_slate_var1')
|
| 375 |
+
sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
|
| 376 |
+
|
| 377 |
+
contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
|
| 378 |
+
if contest_var1 == 'Small':
|
| 379 |
+
Contest_Size = 1000
|
| 380 |
+
elif contest_var1 == 'Medium':
|
| 381 |
+
Contest_Size = 5000
|
| 382 |
+
elif contest_var1 == 'Large':
|
| 383 |
+
Contest_Size = 10000
|
| 384 |
+
elif contest_var1 == 'Custom':
|
| 385 |
+
Contest_Size = st.number_input("Insert contest size", value=100, min_value=100, max_value=100000, step=50)
|
| 386 |
+
strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very'))
|
| 387 |
+
if strength_var1 == 'Not Very':
|
| 388 |
+
sharp_split = 5000000
|
| 389 |
+
elif strength_var1 == 'Below Average':
|
| 390 |
+
sharp_split = 2500000
|
| 391 |
+
elif strength_var1 == 'Average':
|
| 392 |
+
sharp_split = 100000
|
| 393 |
+
elif strength_var1 == 'Above Average':
|
| 394 |
+
sharp_split = 50000
|
| 395 |
+
elif strength_var1 == 'Very':
|
| 396 |
+
sharp_split = 10000
|
| 397 |
+
|
| 398 |
+
|
| 399 |
+
with col2:
|
| 400 |
+
if st.button("Run Contest Sim"):
|
| 401 |
+
if 'working_seed' in st.session_state:
|
| 402 |
+
st.session_state.maps_dict = {
|
| 403 |
+
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
| 404 |
+
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
| 405 |
+
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
|
| 406 |
+
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
|
| 407 |
+
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
| 408 |
+
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
| 409 |
+
}
|
| 410 |
+
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size)
|
| 411 |
+
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
| 412 |
+
|
| 413 |
+
# Initial setup
|
| 414 |
+
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
|
| 415 |
+
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
|
| 416 |
+
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
|
| 417 |
+
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
|
| 418 |
+
|
| 419 |
+
# Type Casting
|
| 420 |
+
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
|
| 421 |
+
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
| 422 |
+
|
| 423 |
+
# Sorting
|
| 424 |
+
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
|
| 425 |
+
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
|
| 426 |
+
|
| 427 |
+
# Data Copying
|
| 428 |
+
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
| 429 |
+
|
| 430 |
+
# Data Copying
|
| 431 |
+
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
|
| 432 |
+
|
| 433 |
+
else:
|
| 434 |
+
if sim_site_var1 == 'Draftkings':
|
| 435 |
+
if sim_slate_var1 == 'Main Slate':
|
| 436 |
+
st.session_state.working_seed = init_DK_seed_frames(sharp_split)
|
| 437 |
+
dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
|
| 438 |
+
raw_baselines = dk_raw
|
| 439 |
+
column_names = dk_columns
|
| 440 |
+
elif sim_slate_var1 == 'Secondary Slate':
|
| 441 |
+
st.session_state.working_seed = init_DK_secondary_seed_frames(sharp_split)
|
| 442 |
+
dk_id_dict = dict(zip(dk_secondary.Player, dk_secondary.player_id))
|
| 443 |
+
raw_baselines = dk_secondary
|
| 444 |
+
column_names = dk_columns
|
| 445 |
+
|
| 446 |
+
elif sim_site_var1 == 'Fanduel':
|
| 447 |
+
if sim_slate_var1 == 'Main Slate':
|
| 448 |
+
st.session_state.working_seed = init_FD_seed_frames(sharp_split)
|
| 449 |
+
fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
|
| 450 |
+
raw_baselines = fd_raw
|
| 451 |
+
column_names = fd_columns
|
| 452 |
+
elif sim_slate_var1 == 'Secondary Slate':
|
| 453 |
+
st.session_state.working_seed = init_FD_secondary_seed_frames(sharp_split)
|
| 454 |
+
fd_id_dict = dict(zip(fd_secondary.Player, fd_secondary.player_id))
|
| 455 |
+
raw_baselines = fd_secondary
|
| 456 |
+
column_names = fd_columns
|
| 457 |
+
|
| 458 |
+
st.session_state.maps_dict = {
|
| 459 |
+
'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
|
| 460 |
+
'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
|
| 461 |
+
'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
|
| 462 |
+
'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
|
| 463 |
+
'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
|
| 464 |
+
'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
|
| 465 |
+
}
|
| 466 |
+
Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size)
|
| 467 |
+
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
|
| 468 |
+
|
| 469 |
+
# Initial setup
|
| 470 |
+
Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
|
| 471 |
+
Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
|
| 472 |
+
Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
|
| 473 |
+
Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
|
| 474 |
+
|
| 475 |
+
# Type Casting
|
| 476 |
+
type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
|
| 477 |
+
Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
|
| 478 |
+
|
| 479 |
+
# Sorting
|
| 480 |
+
st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
|
| 481 |
+
st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
|
| 482 |
+
|
| 483 |
+
# Data Copying
|
| 484 |
+
st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
|
| 485 |
+
|
| 486 |
+
# Data Copying
|
| 487 |
+
st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
|
| 488 |
+
st.session_state.freq_copy = st.session_state.Sim_Winner_Display
|
| 489 |
+
|
| 490 |
+
if sim_site_var1 == 'Draftkings':
|
| 491 |
+
freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:8].values, return_counts=True)),
|
| 492 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 493 |
+
elif sim_site_var1 == 'Fanduel':
|
| 494 |
+
freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)),
|
| 495 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 496 |
+
freq_working['Freq'] = freq_working['Freq'].astype(int)
|
| 497 |
+
freq_working['Position'] = freq_working['Player'].map(st.session_state.maps_dict['Pos_map'])
|
| 498 |
+
freq_working['Salary'] = freq_working['Player'].map(st.session_state.maps_dict['Salary_map'])
|
| 499 |
+
freq_working['Proj Own'] = freq_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
|
| 500 |
+
freq_working['Exposure'] = freq_working['Freq']/(1000)
|
| 501 |
+
freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own']
|
| 502 |
+
freq_working['Team'] = freq_working['Player'].map(st.session_state.maps_dict['Team_map'])
|
| 503 |
+
st.session_state.player_freq = freq_working.copy()
|
| 504 |
+
|
| 505 |
+
if sim_site_var1 == 'Draftkings':
|
| 506 |
+
pg_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:1].values, return_counts=True)),
|
| 507 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 508 |
+
elif sim_site_var1 == 'Fanduel':
|
| 509 |
+
pg_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:2].values, return_counts=True)),
|
| 510 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 511 |
+
pg_working['Freq'] = pg_working['Freq'].astype(int)
|
| 512 |
+
pg_working['Position'] = pg_working['Player'].map(st.session_state.maps_dict['Pos_map'])
|
| 513 |
+
pg_working['Salary'] = pg_working['Player'].map(st.session_state.maps_dict['Salary_map'])
|
| 514 |
+
pg_working['Proj Own'] = pg_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
|
| 515 |
+
pg_working['Exposure'] = pg_working['Freq']/(1000)
|
| 516 |
+
pg_working['Edge'] = pg_working['Exposure'] - pg_working['Proj Own']
|
| 517 |
+
pg_working['Team'] = pg_working['Player'].map(st.session_state.maps_dict['Team_map'])
|
| 518 |
+
st.session_state.pg_freq = pg_working.copy()
|
| 519 |
+
|
| 520 |
+
if sim_site_var1 == 'Draftkings':
|
| 521 |
+
sg_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,1:2].values, return_counts=True)),
|
| 522 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 523 |
+
elif sim_site_var1 == 'Fanduel':
|
| 524 |
+
sg_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,2:4].values, return_counts=True)),
|
| 525 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 526 |
+
sg_working['Freq'] = sg_working['Freq'].astype(int)
|
| 527 |
+
sg_working['Position'] = sg_working['Player'].map(st.session_state.maps_dict['Pos_map'])
|
| 528 |
+
sg_working['Salary'] = sg_working['Player'].map(st.session_state.maps_dict['Salary_map'])
|
| 529 |
+
sg_working['Proj Own'] = sg_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
|
| 530 |
+
sg_working['Exposure'] = sg_working['Freq']/(1000)
|
| 531 |
+
sg_working['Edge'] = sg_working['Exposure'] - sg_working['Proj Own']
|
| 532 |
+
sg_working['Team'] = sg_working['Player'].map(st.session_state.maps_dict['Team_map'])
|
| 533 |
+
st.session_state.sg_freq = sg_working.copy()
|
| 534 |
+
|
| 535 |
+
if sim_site_var1 == 'Draftkings':
|
| 536 |
+
sf_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,2:3].values, return_counts=True)),
|
| 537 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 538 |
+
elif sim_site_var1 == 'Fanduel':
|
| 539 |
+
sf_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,4:6].values, return_counts=True)),
|
| 540 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 541 |
+
sf_working['Freq'] = sf_working['Freq'].astype(int)
|
| 542 |
+
sf_working['Position'] = sf_working['Player'].map(st.session_state.maps_dict['Pos_map'])
|
| 543 |
+
sf_working['Salary'] = sf_working['Player'].map(st.session_state.maps_dict['Salary_map'])
|
| 544 |
+
sf_working['Proj Own'] = sf_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
|
| 545 |
+
sf_working['Exposure'] = sf_working['Freq']/(1000)
|
| 546 |
+
sf_working['Edge'] = sf_working['Exposure'] - sf_working['Proj Own']
|
| 547 |
+
sf_working['Team'] = sf_working['Player'].map(st.session_state.maps_dict['Team_map'])
|
| 548 |
+
st.session_state.sf_freq = sf_working.copy()
|
| 549 |
+
|
| 550 |
+
if sim_site_var1 == 'Draftkings':
|
| 551 |
+
pf_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,3:4].values, return_counts=True)),
|
| 552 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 553 |
+
elif sim_site_var1 == 'Fanduel':
|
| 554 |
+
pf_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,6:8].values, return_counts=True)),
|
| 555 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 556 |
+
pf_working['Freq'] = pf_working['Freq'].astype(int)
|
| 557 |
+
pf_working['Position'] = pf_working['Player'].map(st.session_state.maps_dict['Pos_map'])
|
| 558 |
+
pf_working['Salary'] = pf_working['Player'].map(st.session_state.maps_dict['Salary_map'])
|
| 559 |
+
pf_working['Proj Own'] = pf_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
|
| 560 |
+
pf_working['Exposure'] = pf_working['Freq']/(1000)
|
| 561 |
+
pf_working['Edge'] = pf_working['Exposure'] - pf_working['Proj Own']
|
| 562 |
+
pf_working['Team'] = pf_working['Player'].map(st.session_state.maps_dict['Team_map'])
|
| 563 |
+
st.session_state.pf_freq = pf_working.copy()
|
| 564 |
+
|
| 565 |
+
if sim_site_var1 == 'Draftkings':
|
| 566 |
+
c_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,4:5].values, return_counts=True)),
|
| 567 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 568 |
+
elif sim_site_var1 == 'Fanduel':
|
| 569 |
+
c_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,8:9].values, return_counts=True)),
|
| 570 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 571 |
+
c_working['Freq'] = c_working['Freq'].astype(int)
|
| 572 |
+
c_working['Position'] = c_working['Player'].map(st.session_state.maps_dict['Pos_map'])
|
| 573 |
+
c_working['Salary'] = c_working['Player'].map(st.session_state.maps_dict['Salary_map'])
|
| 574 |
+
c_working['Proj Own'] = c_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
|
| 575 |
+
c_working['Exposure'] = c_working['Freq']/(1000)
|
| 576 |
+
c_working['Edge'] = c_working['Exposure'] - c_working['Proj Own']
|
| 577 |
+
c_working['Team'] = c_working['Player'].map(st.session_state.maps_dict['Team_map'])
|
| 578 |
+
st.session_state.c_freq = c_working.copy()
|
| 579 |
+
|
| 580 |
+
if sim_site_var1 == 'Draftkings':
|
| 581 |
+
g_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,5:6].values, return_counts=True)),
|
| 582 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 583 |
+
elif sim_site_var1 == 'Fanduel':
|
| 584 |
+
g_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:4].values, return_counts=True)),
|
| 585 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 586 |
+
g_working['Freq'] = g_working['Freq'].astype(int)
|
| 587 |
+
g_working['Position'] = g_working['Player'].map(st.session_state.maps_dict['Pos_map'])
|
| 588 |
+
g_working['Salary'] = g_working['Player'].map(st.session_state.maps_dict['Salary_map'])
|
| 589 |
+
g_working['Proj Own'] = g_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
|
| 590 |
+
g_working['Exposure'] = g_working['Freq']/(1000)
|
| 591 |
+
g_working['Edge'] = g_working['Exposure'] - g_working['Proj Own']
|
| 592 |
+
g_working['Team'] = g_working['Player'].map(st.session_state.maps_dict['Team_map'])
|
| 593 |
+
st.session_state.g_freq = g_working.copy()
|
| 594 |
+
|
| 595 |
+
if sim_site_var1 == 'Draftkings':
|
| 596 |
+
f_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,6:7].values, return_counts=True)),
|
| 597 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 598 |
+
elif sim_site_var1 == 'Fanduel':
|
| 599 |
+
f_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,4:8].values, return_counts=True)),
|
| 600 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 601 |
+
f_working['Freq'] = f_working['Freq'].astype(int)
|
| 602 |
+
f_working['Position'] = f_working['Player'].map(st.session_state.maps_dict['Pos_map'])
|
| 603 |
+
f_working['Salary'] = f_working['Player'].map(st.session_state.maps_dict['Salary_map'])
|
| 604 |
+
f_working['Proj Own'] = f_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
|
| 605 |
+
f_working['Exposure'] = f_working['Freq']/(1000)
|
| 606 |
+
f_working['Edge'] = f_working['Exposure'] - f_working['Proj Own']
|
| 607 |
+
f_working['Team'] = f_working['Player'].map(st.session_state.maps_dict['Team_map'])
|
| 608 |
+
st.session_state.f_freq = f_working.copy()
|
| 609 |
+
|
| 610 |
+
if sim_site_var1 == 'Draftkings':
|
| 611 |
+
flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,7:8].values, return_counts=True)),
|
| 612 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 613 |
+
elif sim_site_var1 == 'Fanduel':
|
| 614 |
+
flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)),
|
| 615 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 616 |
+
flex_working['Freq'] = flex_working['Freq'].astype(int)
|
| 617 |
+
flex_working['Position'] = flex_working['Player'].map(st.session_state.maps_dict['Pos_map'])
|
| 618 |
+
flex_working['Salary'] = flex_working['Player'].map(st.session_state.maps_dict['Salary_map'])
|
| 619 |
+
flex_working['Proj Own'] = flex_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
|
| 620 |
+
flex_working['Exposure'] = flex_working['Freq']/(1000)
|
| 621 |
+
flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own']
|
| 622 |
+
flex_working['Team'] = flex_working['Player'].map(st.session_state.maps_dict['Team_map'])
|
| 623 |
+
st.session_state.flex_freq = flex_working.copy()
|
| 624 |
+
|
| 625 |
+
if sim_site_var1 == 'Draftkings':
|
| 626 |
+
team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,10:11].values, return_counts=True)),
|
| 627 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 628 |
+
elif sim_site_var1 == 'Fanduel':
|
| 629 |
+
team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,11:12].values, return_counts=True)),
|
| 630 |
+
columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
|
| 631 |
+
team_working['Freq'] = team_working['Freq'].astype(int)
|
| 632 |
+
team_working['Exposure'] = team_working['Freq']/(1000)
|
| 633 |
+
st.session_state.team_freq = team_working.copy()
|
| 634 |
+
|
| 635 |
+
with st.container():
|
| 636 |
+
if st.button("Reset Sim", key='reset_sim'):
|
| 637 |
+
for key in st.session_state.keys():
|
| 638 |
+
del st.session_state[key]
|
| 639 |
+
if 'player_freq' in st.session_state:
|
| 640 |
+
player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
|
| 641 |
+
if player_split_var2 == 'Specific Players':
|
| 642 |
+
find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique())
|
| 643 |
+
elif player_split_var2 == 'Full Players':
|
| 644 |
+
find_var2 = st.session_state.player_freq.Player.values.tolist()
|
| 645 |
+
|
| 646 |
+
if player_split_var2 == 'Specific Players':
|
| 647 |
+
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)]
|
| 648 |
+
if player_split_var2 == 'Full Players':
|
| 649 |
+
st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
|
| 650 |
+
if 'Sim_Winner_Display' in st.session_state:
|
| 651 |
+
st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
| 652 |
+
if 'Sim_Winner_Export' in st.session_state:
|
| 653 |
+
st.download_button(
|
| 654 |
+
label="Export Full Frame",
|
| 655 |
+
data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
|
| 656 |
+
file_name='MLB_consim_export.csv',
|
| 657 |
+
mime='text/csv',
|
| 658 |
+
)
|
| 659 |
+
tab1, tab2 = st.tabs(['Winning Frame Statistics', 'Flex Exposure Statistics'])
|
| 660 |
+
|
| 661 |
+
with tab1:
|
| 662 |
+
if 'Sim_Winner_Display' in st.session_state:
|
| 663 |
+
# Create a new dataframe with summary statistics
|
| 664 |
+
summary_df = pd.DataFrame({
|
| 665 |
+
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
|
| 666 |
+
'Salary': [
|
| 667 |
+
st.session_state.Sim_Winner_Display['salary'].min(),
|
| 668 |
+
st.session_state.Sim_Winner_Display['salary'].mean(),
|
| 669 |
+
st.session_state.Sim_Winner_Display['salary'].max(),
|
| 670 |
+
st.session_state.Sim_Winner_Display['salary'].std()
|
| 671 |
+
],
|
| 672 |
+
'Proj': [
|
| 673 |
+
st.session_state.Sim_Winner_Display['proj'].min(),
|
| 674 |
+
st.session_state.Sim_Winner_Display['proj'].mean(),
|
| 675 |
+
st.session_state.Sim_Winner_Display['proj'].max(),
|
| 676 |
+
st.session_state.Sim_Winner_Display['proj'].std()
|
| 677 |
+
],
|
| 678 |
+
'Own': [
|
| 679 |
+
st.session_state.Sim_Winner_Display['Own'].min(),
|
| 680 |
+
st.session_state.Sim_Winner_Display['Own'].mean(),
|
| 681 |
+
st.session_state.Sim_Winner_Display['Own'].max(),
|
| 682 |
+
st.session_state.Sim_Winner_Display['Own'].std()
|
| 683 |
+
],
|
| 684 |
+
'Fantasy': [
|
| 685 |
+
st.session_state.Sim_Winner_Display['Fantasy'].min(),
|
| 686 |
+
st.session_state.Sim_Winner_Display['Fantasy'].mean(),
|
| 687 |
+
st.session_state.Sim_Winner_Display['Fantasy'].max(),
|
| 688 |
+
st.session_state.Sim_Winner_Display['Fantasy'].std()
|
| 689 |
+
],
|
| 690 |
+
'GPP_Proj': [
|
| 691 |
+
st.session_state.Sim_Winner_Display['GPP_Proj'].min(),
|
| 692 |
+
st.session_state.Sim_Winner_Display['GPP_Proj'].mean(),
|
| 693 |
+
st.session_state.Sim_Winner_Display['GPP_Proj'].max(),
|
| 694 |
+
st.session_state.Sim_Winner_Display['GPP_Proj'].std()
|
| 695 |
+
]
|
| 696 |
+
})
|
| 697 |
+
|
| 698 |
+
# Set the index of the summary dataframe as the "Metric" column
|
| 699 |
+
summary_df = summary_df.set_index('Metric')
|
| 700 |
+
|
| 701 |
+
# Display the summary dataframe
|
| 702 |
+
st.subheader("Winning Frame Statistics")
|
| 703 |
+
st.dataframe(summary_df.style.format({
|
| 704 |
+
'Salary': '{:.2f}',
|
| 705 |
+
'Proj': '{:.2f}',
|
| 706 |
+
'Fantasy': '{:.2f}',
|
| 707 |
+
'GPP_Proj': '{:.2f}'
|
| 708 |
+
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own', 'Fantasy', 'GPP_Proj']), use_container_width=True)
|
| 709 |
+
|
| 710 |
+
with tab2:
|
| 711 |
+
if 'Sim_Winner_Display' in st.session_state:
|
| 712 |
+
st.write("Yeah man that's crazy")
|
| 713 |
+
|
| 714 |
+
else:
|
| 715 |
+
st.write("Simulation data or position mapping not available.")
|
| 716 |
+
with st.container():
|
| 717 |
+
tab1, tab2 = st.tabs(['Overall Exposures', 'Team Exposures'])
|
| 718 |
+
with tab1:
|
| 719 |
+
if 'player_freq' in st.session_state:
|
| 720 |
+
|
| 721 |
+
st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
| 722 |
+
st.download_button(
|
| 723 |
+
label="Export Exposures",
|
| 724 |
+
data=st.session_state.player_freq.to_csv().encode('utf-8'),
|
| 725 |
+
file_name='player_freq_export.csv',
|
| 726 |
+
mime='text/csv',
|
| 727 |
+
key='overall'
|
| 728 |
+
)
|
| 729 |
+
|
| 730 |
+
with tab2:
|
| 731 |
+
if 'team_freq' in st.session_state:
|
| 732 |
+
|
| 733 |
+
st.dataframe(st.session_state.team_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
|
| 734 |
+
st.download_button(
|
| 735 |
+
label="Export Exposures",
|
| 736 |
+
data=st.session_state.team_freq.to_csv().encode('utf-8'),
|
| 737 |
+
file_name='team_freq.csv',
|
| 738 |
+
mime='text/csv',
|
| 739 |
+
key='team'
|
| 740 |
+
)
|
app.yaml
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
runtime: python
|
| 2 |
+
env: flex
|
| 3 |
+
|
| 4 |
+
runtime_config:
|
| 5 |
+
python_version: 3
|
| 6 |
+
|
| 7 |
+
entrypoint: streamlit run streamlit-app.py --server.port $PORT
|
| 8 |
+
|
| 9 |
+
automatic_scaling:
|
| 10 |
+
max_num_instances: 1000
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit
|
| 2 |
+
gspread
|
| 3 |
+
openpyxl
|
| 4 |
+
matplotlib
|
| 5 |
+
pymongo
|
| 6 |
+
pulp
|
| 7 |
+
docker
|
| 8 |
+
plotly
|
| 9 |
+
scipy
|
| 10 |
+
polars
|