|
import numpy as np |
|
import pandas as pd |
|
import streamlit as st |
|
import pymongo |
|
|
|
st.set_page_config(layout="wide") |
|
|
|
@st.cache_resource |
|
def init_conn(): |
|
|
|
uri = st.secrets['mongo_uri'] |
|
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000) |
|
db = client["NBA_DFS"] |
|
|
|
return db |
|
|
|
db = init_conn() |
|
|
|
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '4x%': '{:.2%}', '5x%': '{:.2%}', |
|
'6x%': '{:.2%}','GPP%': '{:.2%}'} |
|
|
|
@st.cache_resource(ttl = 300) |
|
def init_stat_load(): |
|
collection = db["Player_Range_Of_Outcomes"] |
|
cursor = collection.find() |
|
raw_display = pd.DataFrame(cursor) |
|
raw_display = raw_display.rename(columns={"Minutes Proj": "Minutes"}) |
|
|
|
raw_display = raw_display[['Player', 'Salary', 'Position', 'Team', 'Minutes', 'Median', 'Own', 'site', 'slate', 'timestamp']] |
|
raw_display.replace("", 'Welp', inplace=True) |
|
raw_display = raw_display.loc[raw_display['Player'] != 'Welp'] |
|
raw_display = raw_display.loc[raw_display['Median'] > 0] |
|
raw_display = raw_display.apply(pd.to_numeric, errors='ignore') |
|
proj_raw = raw_display.sort_values(by='Median', ascending=False) |
|
|
|
timestamp = proj_raw['timestamp'].iloc[0] |
|
|
|
return proj_raw, timestamp |
|
|
|
@st.cache_data |
|
def convert_df_to_csv(df): |
|
return df.to_csv().encode('utf-8') |
|
|
|
proj_raw, timestamp = init_stat_load() |
|
t_stamp = f"Last Update: " + str(timestamp) + f" CST" |
|
|
|
tab1, tab2 = st.tabs(['Pivot Finder', 'Uploads and Info']) |
|
|
|
with tab2: |
|
st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Minutes', 'Median', 'Own'.") |
|
col1, col2 = st.columns([1, 5]) |
|
|
|
with col1: |
|
proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader') |
|
|
|
if proj_file is not None: |
|
try: |
|
proj_dataframe = pd.read_csv(proj_file) |
|
try: |
|
proj_dataframe = proj_dataframe.replace(',','', regex=True) |
|
proj_dataframe['Salary'] = proj_dataframe['Salary'].astype(int) |
|
except: |
|
pass |
|
except: |
|
proj_dataframe = pd.read_excel(proj_file) |
|
try: |
|
proj_dataframe = proj_dataframe.replace(',','', regex=True) |
|
proj_dataframe['Salary'] = proj_dataframe['Salary'].astype(int) |
|
except: |
|
pass |
|
with col2: |
|
if proj_file is not None: |
|
st.dataframe(proj_dataframe.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True) |
|
|
|
|
|
with tab1: |
|
col1, col2 = st.columns([1, 9]) |
|
with col1: |
|
st.info(t_stamp) |
|
if st.button("Load/Reset Data", key='reset1'): |
|
st.cache_data.clear() |
|
proj_raw, timestamp = init_stat_load() |
|
t_stamp = f"Last Update: " + str(timestamp) + f" CST" |
|
for key in st.session_state.keys(): |
|
del st.session_state[key] |
|
data_var1 = st.radio("Which data are you loading?", ('Paydirt', 'User'), key='data_var1') |
|
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1') |
|
slate_var1 = st.radio("What slate are you working with?", ('Main Slate', 'Secondary Slate'), key='slate_var1') |
|
if site_var1 == 'Draftkings': |
|
if data_var1 == 'User': |
|
raw_baselines = proj_dataframe |
|
elif data_var1 != 'User': |
|
raw_baselines = proj_raw[proj_raw['site'] == 'Draftkings'] |
|
if slate_var1 == 'Main Slate': |
|
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Main Slate'] |
|
elif slate_var1 == 'Secondary Slate': |
|
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Secondary Slate'] |
|
raw_baselines = raw_baselines.sort_values(by='Own', ascending=False) |
|
elif site_var1 == 'Fanduel': |
|
if data_var1 == 'User': |
|
raw_baselines = proj_dataframe |
|
elif data_var1 != 'User': |
|
raw_baselines = proj_raw[proj_raw['site'] == 'Fanduel'] |
|
if slate_var1 == 'Main Slate': |
|
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Main Slate'] |
|
elif slate_var1 == 'Secondary Slate': |
|
raw_baselines = raw_baselines[raw_baselines['slate'] == 'Secondary Slate'] |
|
raw_baselines = raw_baselines.sort_values(by='Own', ascending=False) |
|
check_seq = st.radio("Do you want to check a single player or the top 10 in ownership?", ('Single Player', 'Top X Owned'), key='check_seq') |
|
if check_seq == 'Single Player': |
|
player_check = st.selectbox('Select player to create comps', options = raw_baselines['Player'].unique(), key='dk_player') |
|
elif check_seq == 'Top X Owned': |
|
top_x_var = st.number_input('How many players would you like to check?', min_value = 1, max_value = 10, value = 5, step = 1) |
|
Salary_var = st.number_input('Acceptable +/- Salary range', min_value = 0, max_value = 1000, value = 300, step = 100) |
|
Median_var = st.number_input('Acceptable +/- Median range', min_value = 0, max_value = 10, value = 3, step = 1) |
|
pos_var1 = st.radio("Compare to all positions or specific positions?", ('All Positions', 'Specific Positions'), key='pos_var1') |
|
if pos_var1 == 'Specific Positions': |
|
pos_var_list = st.multiselect('Which positions would you like to include?', options = ['PG', 'SG', 'SF', 'PF', 'C'], key='pos_var_list') |
|
elif pos_var1 == 'All Positions': |
|
pos_var_list = ['PG', 'SG', 'SF', 'PF', 'C'] |
|
split_var1 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var1') |
|
if split_var1 == 'Specific Games': |
|
team_var1 = st.multiselect('Which teams would you like to include?', options = raw_baselines['Team'].unique(), key='team_var1') |
|
elif split_var1 == 'Full Slate Run': |
|
team_var1 = raw_baselines.Team.values.tolist() |
|
|
|
with col2: |
|
placeholder = st.empty() |
|
displayholder = st.empty() |
|
|
|
if st.button('Simulate appropriate pivots'): |
|
with placeholder: |
|
if site_var1 == 'Draftkings': |
|
working_roo = raw_baselines |
|
working_roo.replace('', 0, inplace=True) |
|
if site_var1 == 'Fanduel': |
|
working_roo = raw_baselines |
|
working_roo.replace('', 0, inplace=True) |
|
|
|
own_dict = dict(zip(working_roo.Player, working_roo.Own)) |
|
team_dict = dict(zip(working_roo.Player, working_roo.Team)) |
|
pos_dict = dict(zip(working_roo.Player, working_roo.Position)) |
|
min_dict = dict(zip(working_roo.Player, working_roo.Minutes)) |
|
total_sims = 1000 |
|
|
|
if check_seq == 'Single Player': |
|
player_var = working_roo.loc[working_roo['Player'] == player_check] |
|
player_var = player_var.reset_index() |
|
working_roo = working_roo[working_roo['Position'].apply(lambda x: any(pos in x.split('/') for pos in pos_var_list))] |
|
working_roo = working_roo[working_roo['Team'].isin(team_var1)] |
|
working_roo = working_roo.loc[(working_roo['Salary'] >= player_var['Salary'][0] - Salary_var) & (working_roo['Salary'] <= player_var['Salary'][0] + Salary_var)] |
|
working_roo = working_roo.loc[(working_roo['Median'] >= player_var['Median'][0] - Median_var) & (working_roo['Median'] <= player_var['Median'][0] + Median_var)] |
|
|
|
flex_file = working_roo[['Player', 'Position', 'Salary', 'Median', 'Minutes']] |
|
flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes'] * .25) |
|
flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes'] * .25) |
|
flex_file['STD'] = (flex_file['Median']/4) |
|
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']] |
|
hold_file = flex_file.copy() |
|
overall_file = flex_file.copy() |
|
salary_file = flex_file.copy() |
|
|
|
overall_players = overall_file[['Player']] |
|
|
|
for x in range(0,total_sims): |
|
salary_file[x] = salary_file['Salary'] |
|
|
|
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1) |
|
|
|
salary_file = salary_file.div(1000) |
|
|
|
for x in range(0,total_sims): |
|
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD']) |
|
|
|
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1) |
|
|
|
players_only = hold_file[['Player']] |
|
raw_lineups_file = players_only |
|
|
|
for x in range(0,total_sims): |
|
maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))} |
|
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])]) |
|
players_only[x] = raw_lineups_file[x].rank(ascending=False) |
|
|
|
players_only=players_only.drop(['Player'], axis=1) |
|
|
|
salary_4x_check = (overall_file - (salary_file*4)) |
|
salary_5x_check = (overall_file - (salary_file*5)) |
|
salary_6x_check = (overall_file - (salary_file*6)) |
|
gpp_check = (overall_file - ((salary_file*5)+10)) |
|
|
|
players_only['Average_Rank'] = players_only.mean(axis=1) |
|
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims |
|
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims |
|
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims |
|
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims) |
|
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims) |
|
players_only['5x%'] = salary_5x_check[salary_5x_check >= 1].count(axis=1)/float(total_sims) |
|
players_only['6x%'] = salary_6x_check[salary_6x_check >= 1].count(axis=1)/float(total_sims) |
|
players_only['GPP%'] = salary_4x_check[gpp_check >= 1].count(axis=1)/float(total_sims) |
|
|
|
players_only['Player'] = hold_file[['Player']] |
|
|
|
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%']] |
|
|
|
final_Proj = pd.merge(hold_file, final_outcomes, on="Player") |
|
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%']] |
|
|
|
final_Proj['Own'] = final_Proj['Player'].map(own_dict) |
|
final_Proj['Minutes Proj'] = final_Proj['Player'].map(min_dict) |
|
final_Proj['Team'] = final_Proj['Player'].map(team_dict) |
|
final_Proj['Own'] = final_Proj['Own'].astype('float') |
|
final_Proj = final_Proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%', 'Own']] |
|
final_Proj['Projection Rank'] = final_Proj.Top_finish.rank(pct = True) |
|
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True) |
|
final_Proj['LevX'] = (final_Proj['Projection Rank'] - final_Proj['Own Rank']) * 100 |
|
final_Proj['ValX'] = ((final_Proj[['4x%', '5x%']].mean(axis=1))*100) + final_Proj['LevX'] |
|
final_Proj['ValX'] = np.where(final_Proj['ValX'] > 100, 100, final_Proj['ValX']) |
|
final_Proj['ValX'] = np.where(final_Proj['ValX'] < 0, 0, final_Proj['ValX']) |
|
|
|
final_Proj = final_Proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%', 'Own', 'LevX', 'ValX']] |
|
final_Proj = final_Proj.set_index('Player') |
|
|
|
st.session_state.final_Proj = final_Proj.sort_values(by='Top_finish', ascending=False) |
|
|
|
elif check_seq == 'Top X Owned': |
|
if pos_var1 == 'Specific Positions': |
|
raw_baselines = raw_baselines[raw_baselines['Position'].apply(lambda x: any(pos in x.split('/') for pos in pos_var_list))] |
|
player_check = raw_baselines['Player'].head(top_x_var).tolist() |
|
st.write(player_check) |
|
final_proj_list = [] |
|
for players in player_check: |
|
players_pos = pos_dict[players] |
|
player_var = working_roo.loc[working_roo['Player'] == players] |
|
player_var = player_var.reset_index() |
|
working_roo_temp = working_roo[working_roo['Team'].isin(team_var1)] |
|
|
|
working_roo_temp = working_roo_temp.loc[(working_roo_temp['Salary'] >= player_var['Salary'][0] - Salary_var) & (working_roo_temp['Salary'] <= player_var['Salary'][0] + Salary_var)] |
|
working_roo_temp = working_roo_temp.loc[(working_roo_temp['Median'] >= player_var['Median'][0] - Median_var) & (working_roo_temp['Median'] <= player_var['Median'][0] + Median_var)] |
|
|
|
flex_file = working_roo_temp[['Player', 'Position', 'Salary', 'Median', 'Minutes']] |
|
flex_file['Floor'] = (flex_file['Median'] * .25) + (flex_file['Minutes'] * .25) |
|
flex_file['Ceiling'] = flex_file['Median'] + 10 + (flex_file['Minutes'] * .25) |
|
flex_file['STD'] = (flex_file['Median']/4) |
|
flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']] |
|
hold_file = flex_file.copy() |
|
overall_file = flex_file.copy() |
|
salary_file = flex_file.copy() |
|
|
|
overall_players = overall_file[['Player']] |
|
|
|
for x in range(0,total_sims): |
|
salary_file[x] = salary_file['Salary'] |
|
|
|
salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1) |
|
|
|
salary_file = salary_file.div(1000) |
|
|
|
for x in range(0,total_sims): |
|
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD']) |
|
|
|
overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1) |
|
|
|
players_only = hold_file[['Player']] |
|
raw_lineups_file = players_only |
|
|
|
for x in range(0,total_sims): |
|
maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))} |
|
raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])]) |
|
players_only[x] = raw_lineups_file[x].rank(ascending=False) |
|
|
|
players_only=players_only.drop(['Player'], axis=1) |
|
|
|
salary_4x_check = (overall_file - (salary_file*4)) |
|
salary_5x_check = (overall_file - (salary_file*5)) |
|
salary_6x_check = (overall_file - (salary_file*6)) |
|
gpp_check = (overall_file - ((salary_file*5)+10)) |
|
|
|
players_only['Average_Rank'] = players_only.mean(axis=1) |
|
players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims |
|
players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims |
|
players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims |
|
players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims) |
|
players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims) |
|
players_only['5x%'] = salary_5x_check[salary_5x_check >= 1].count(axis=1)/float(total_sims) |
|
players_only['6x%'] = salary_6x_check[salary_6x_check >= 1].count(axis=1)/float(total_sims) |
|
players_only['GPP%'] = salary_4x_check[gpp_check >= 1].count(axis=1)/float(total_sims) |
|
|
|
players_only['Player'] = hold_file[['Player']] |
|
|
|
final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%']] |
|
|
|
final_Proj = pd.merge(hold_file, final_outcomes, on="Player") |
|
final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%']] |
|
|
|
final_Proj['Own'] = final_Proj['Player'].map(own_dict) |
|
final_Proj['Minutes Proj'] = final_Proj['Player'].map(min_dict) |
|
final_Proj['Team'] = final_Proj['Player'].map(team_dict) |
|
final_Proj['Own'] = final_Proj['Own'].astype('float') |
|
final_Proj['Projection Rank'] = final_Proj.Top_finish.rank(pct = True) |
|
final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True) |
|
final_Proj['LevX'] = (final_Proj['Projection Rank'] - final_Proj['Own Rank']) * 100 |
|
final_Proj['ValX'] = ((final_Proj[['4x%', '5x%']].mean(axis=1))*100) + final_Proj['LevX'] |
|
final_Proj['ValX'] = np.where(final_Proj['ValX'] > 100, 100, final_Proj['ValX']) |
|
final_Proj['ValX'] = np.where(final_Proj['ValX'] < 0, 0, final_Proj['ValX']) |
|
final_Proj['Pivot_source'] = players |
|
|
|
final_Proj = final_Proj[['Player', 'Pivot_source', 'Position', 'Team', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%', 'Own', 'LevX', 'ValX']] |
|
|
|
final_Proj = final_Proj.sort_values(by='Top_finish', ascending=False) |
|
final_proj_list.append(final_Proj) |
|
st.write(f'finished run for {players}') |
|
|
|
|
|
final_Proj_combined = pd.concat(final_proj_list) |
|
final_Proj_combined = final_Proj_combined.sort_values(by='LevX', ascending=False) |
|
final_Proj_combined = final_Proj_combined[final_Proj_combined['Player'] != final_Proj_combined['Pivot_source']] |
|
st.session_state.final_Proj = final_Proj_combined.reset_index(drop=True) |
|
|
|
placeholder.empty() |
|
|
|
with displayholder.container(): |
|
if 'final_Proj' in st.session_state: |
|
st.dataframe(st.session_state.final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True) |
|
|
|
st.download_button( |
|
label="Export Tables", |
|
data=convert_df_to_csv(st.session_state.final_Proj), |
|
file_name='NBA_pivot_export.csv', |
|
mime='text/csv', |
|
) |
|
else: |
|
st.write("Run some pivots my dude/dudette") |