James McCool commited on
Commit
a16fe9a
·
1 Parent(s): e080880

Initial commit for structure

Browse files
Files changed (3) hide show
  1. app.py +596 -0
  2. app.yaml +10 -0
  3. requirements.txt +9 -0
app.py ADDED
@@ -0,0 +1,596 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import numpy as np
3
+ import pandas as pd
4
+ import streamlit as st
5
+ import gspread
6
+ import pymongo
7
+
8
+ st.set_page_config(layout="wide")
9
+
10
+ @st.cache_resource
11
+ def init_conn():
12
+
13
+ uri = st.secrets['mongo_uri']
14
+ client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
15
+ db = client["NBA_DFS"]
16
+
17
+ return db
18
+
19
+ db = init_conn()
20
+
21
+ dk_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
22
+ fd_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
23
+
24
+ roo_format = {'Top_finish': '{:.2%}', 'Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '4x%': '{:.2%}', '5x%': '{:.2%}', '6x%': '{:.2%}', 'GPP%': '{:.2%}'}
25
+
26
+ @st.cache_data(ttl=60)
27
+ def load_overall_stats():
28
+ collection = db["DK_Player_Stats"]
29
+ cursor = collection.find()
30
+
31
+ raw_display = pd.DataFrame(list(cursor))
32
+ raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
33
+ 'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
34
+ raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
35
+ raw_display = raw_display.loc[raw_display['Median'] > 0]
36
+ raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
37
+ dk_raw = raw_display.sort_values(by='Median', ascending=False)
38
+
39
+ collection = db["FD_Player_Stats"]
40
+ cursor = collection.find()
41
+
42
+ raw_display = pd.DataFrame(list(cursor))
43
+ raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
44
+ 'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
45
+ raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
46
+ raw_display = raw_display.loc[raw_display['Median'] > 0]
47
+ raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
48
+ fd_raw = raw_display.sort_values(by='Median', ascending=False)
49
+
50
+ collection = db["Secondary_DK_Player_Stats"]
51
+ cursor = collection.find()
52
+
53
+ raw_display = pd.DataFrame(list(cursor))
54
+ raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
55
+ 'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
56
+ raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
57
+ raw_display = raw_display.loc[raw_display['Median'] > 0]
58
+ raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
59
+ dk_raw_sec = raw_display.sort_values(by='Median', ascending=False)
60
+
61
+ collection = db["Secondary_FD_Player_Stats"]
62
+ cursor = collection.find()
63
+
64
+ raw_display = pd.DataFrame(list(cursor))
65
+ raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
66
+ 'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
67
+ raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
68
+ raw_display = raw_display.loc[raw_display['Median'] > 0]
69
+ raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
70
+ fd_raw_sec = raw_display.sort_values(by='Median', ascending=False)
71
+
72
+ collection = db["Player_Range_Of_Outcomes"]
73
+ cursor = collection.find()
74
+
75
+ raw_display = pd.DataFrame(list(cursor))
76
+ raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
77
+ 'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_ID']]
78
+ raw_display = raw_display.loc[raw_display['Median'] > 0]
79
+ raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
80
+ roo_raw = raw_display.sort_values(by='Median', ascending=False)
81
+
82
+ timestamp = raw_display['timestamp'].values[0]
83
+
84
+ collection = db["Range_Of_Outcomes_Backlog"]
85
+ cursor = collection.find()
86
+
87
+ raw_display = pd.DataFrame(list(cursor))
88
+ raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
89
+ 'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'Date']]
90
+ roo_backlog = raw_display.sort_values(by='Date', ascending=False)
91
+ roo_backlog = roo_backlog[roo_backlog['slate'] == 'Main Slate']
92
+
93
+ return dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog
94
+
95
+ @st.cache_data(ttl = 60)
96
+ def init_DK_lineups():
97
+
98
+ collection = db['DK_NBA_name_map']
99
+ cursor = collection.find()
100
+ raw_data = pd.DataFrame(list(cursor))
101
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
102
+
103
+ collection = db["DK_NBA_seed_frame"]
104
+ cursor = collection.find().limit(10000)
105
+
106
+ raw_display = pd.DataFrame(list(cursor))
107
+ raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
108
+ dict_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX']
109
+ for col in dict_columns:
110
+ raw_display[col] = raw_display[col].map(names_dict)
111
+ DK_seed = raw_display.to_numpy()
112
+
113
+ return DK_seed
114
+
115
+ @st.cache_data(ttl = 60)
116
+ def init_FD_lineups():
117
+
118
+ collection = db['FD_NBA_name_map']
119
+ cursor = collection.find()
120
+ raw_data = pd.DataFrame(list(cursor))
121
+ names_dict = dict(zip(raw_data['key'], raw_data['value']))
122
+
123
+ collection = db["FD_NBA_seed_frame"]
124
+ cursor = collection.find().limit(10000)
125
+
126
+ raw_display = pd.DataFrame(list(cursor))
127
+ raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
128
+ dict_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1']
129
+ for col in dict_columns:
130
+ raw_display[col] = raw_display[col].map(names_dict)
131
+ FD_seed = raw_display.to_numpy()
132
+
133
+ return FD_seed
134
+
135
+ def convert_df_to_csv(df):
136
+ return df.to_csv().encode('utf-8')
137
+
138
+ @st.cache_data
139
+ def convert_df(array):
140
+ array = pd.DataFrame(array, columns=column_names)
141
+ return array.to_csv().encode('utf-8')
142
+
143
+ dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog = load_overall_stats()
144
+ salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
145
+
146
+ try:
147
+ dk_lineups = init_DK_lineups()
148
+ fd_lineups = init_FD_lineups()
149
+ except:
150
+ dk_lineups = pd.DataFrame(columns=dk_columns)
151
+ fd_lineups = pd.DataFrame(columns=fd_columns)
152
+ t_stamp = f"Last Update: " + str(timestamp) + f" CST"
153
+
154
+ tab1, tab2 = st.tabs(['Range of Outcomes', 'Optimals'])
155
+
156
+ with st.sidebar:
157
+ st.header("Quick Builder")
158
+ st.info("This is a quick hand building helper to give you some basic info about player combos and lineup feasibility")
159
+ sidebar_site = st.selectbox("What site are you running?", ('Draftkings', 'Fanduel'), key='sidebar_site')
160
+ sidebar_slate = st.selectbox("What slate are you running?", ('Main Slate', 'Secondary Slate'), key='sidebar_slate')
161
+
162
+ if sidebar_site == 'Draftkings':
163
+ roo_sample = roo_raw[roo_raw['slate'] == str(sidebar_slate)]
164
+ roo_sample = roo_sample[roo_sample['site'] == 'Draftkings']
165
+ roo_sample = roo_sample.sort_values(by='Own', ascending=False)
166
+ selected_pg = []
167
+ selected_sg = []
168
+ selected_sf = []
169
+ selected_pf = []
170
+ selected_c = []
171
+ selected_g = []
172
+ selected_f = []
173
+ selected_flex = []
174
+ elif sidebar_site == 'Fanduel':
175
+ roo_sample = roo_raw[roo_raw['slate'] == str(sidebar_slate)]
176
+ roo_sample = roo_sample[roo_sample['site'] == 'Fanduel']
177
+ roo_sample = roo_sample.sort_values(by='Own', ascending=False)
178
+ selected_pg1 = []
179
+ selected_pg2 = []
180
+ selected_sg1 = []
181
+ selected_sg2 = []
182
+ selected_sf1 = []
183
+ selected_sf2 = []
184
+ selected_pf1 = []
185
+ selected_pf2 = []
186
+ selected_c1 = []
187
+
188
+ # Get unique players by position from dk_roo_raw
189
+ pgs = roo_sample[roo_sample['Position'].str.contains('PG')]['Player'].unique()
190
+ sgs = roo_sample[roo_sample['Position'].str.contains('SG')]['Player'].unique()
191
+ sfs = roo_sample[roo_sample['Position'].str.contains('SF')]['Player'].unique()
192
+ pfs = roo_sample[roo_sample['Position'].str.contains('PF')]['Player'].unique()
193
+ centers = roo_sample[roo_sample['Position'].str.contains('C')]['Player'].unique()
194
+ guards = roo_sample[roo_sample['Position'].str.contains('G')]['Player'].unique()
195
+ forwards = roo_sample[roo_sample['Position'].str.contains('F')]['Player'].unique()
196
+ flex = roo_sample['Player'].unique()
197
+
198
+ if sidebar_site == 'Draftkings':
199
+ selected_pgs = st.multiselect('Select PG:', list(pgs), default=None, placeholder='Select PG', label_visibility='collapsed', key='pg1')
200
+ selected_sgs = st.multiselect('Select SG:', list(sgs), default=None, placeholder='Select SG', label_visibility='collapsed', key='sg1')
201
+ selected_sfs = st.multiselect('Select SF:', list(sfs), default=None, placeholder='Select SF', label_visibility='collapsed', key='sf1')
202
+ selected_pfs = st.multiselect('Select PF:', list(pfs), default=None, placeholder='Select PF', label_visibility='collapsed', key='pf1')
203
+ selected_cs = st.multiselect('Select C:', list(centers), default=None, placeholder='Select C', label_visibility='collapsed', key='c1')
204
+ selected_g = st.multiselect('Select G:', list(guards), default=None, placeholder='Select G', label_visibility='collapsed', key='g')
205
+ selected_f = st.multiselect('Select F:', list(forwards), default=None, placeholder='Select F', label_visibility='collapsed', key='f')
206
+ selected_flex = st.multiselect('Select Flex:', list(flex), default=None, placeholder='Select Flex', label_visibility='collapsed', key='flex')
207
+
208
+ # Combine all selected players
209
+ all_selected = selected_pgs + selected_sgs + selected_sfs + selected_pfs + selected_cs + selected_g + selected_f + selected_flex
210
+
211
+ elif sidebar_site == 'Fanduel':
212
+ selected_pg1 = st.multiselect('Select PG1:', list(pgs), default=None, placeholder='Select PG1', label_visibility='collapsed', key='pg1')
213
+ selected_pg2 = st.multiselect('Select PG2:', list(pgs), default=None, placeholder='Select PG2', label_visibility='collapsed', key='pg2')
214
+ selected_sg1 = st.multiselect('Select SG1:', list(sgs), default=None, placeholder='Select SG1', label_visibility='collapsed', key='sg1')
215
+ selected_sg2 = st.multiselect('Select SG2:', list(sgs), default=None, placeholder='Select SG2', label_visibility='collapsed', key='sg2')
216
+ selected_sf1 = st.multiselect('Select SF1:', list(sfs), default=None, placeholder='Select SF1', label_visibility='collapsed', key='sf1')
217
+ selected_sf2 = st.multiselect('Select SF2:', list(sfs), default=None, placeholder='Select SF2', label_visibility='collapsed', key='sf2')
218
+ selected_pf1 = st.multiselect('Select PF1:', list(pfs), default=None, placeholder='Select PF1', label_visibility='collapsed', key='pf1')
219
+ selected_pf2 = st.multiselect('Select PF2:', list(pfs), default=None, placeholder='Select PF2', label_visibility='collapsed', key='pf2')
220
+ selected_c1 = st.multiselect('Select C1:', list(centers), default=None, placeholder='Select C1', label_visibility='collapsed', key='c1')
221
+
222
+ # Combine all selected players
223
+ all_selected = selected_pg1 + selected_pg2 + selected_sg1 + selected_sg2 + selected_sf1 + selected_sf2 + selected_pf1 + selected_pf2 + selected_c1
224
+
225
+ if all_selected:
226
+ # Get stats for selected players
227
+ selected_stats = roo_sample[roo_sample['Player'].isin(all_selected)]
228
+
229
+ # Calculate sums
230
+ salary_sum = selected_stats['Salary'].sum()
231
+ median_sum = selected_stats['Median'].sum()
232
+ own_sum = selected_stats['Own'].sum()
233
+ levx_sum = selected_stats['LevX'].sum()
234
+
235
+ # Display sums
236
+ st.write('---')
237
+ if sidebar_site == 'Draftkings':
238
+ if salary_sum > 50000:
239
+ st.warning(f'Total Salary: ${salary_sum:.2f} exceeds limit of $50,000')
240
+ else:
241
+ st.write(f'Total Salary: ${salary_sum:.2f}')
242
+ elif sidebar_site == 'Fanduel':
243
+ if salary_sum > 60000:
244
+ st.warning(f'Total Salary: ${salary_sum:.2f} exceeds limit of $60,000')
245
+ else:
246
+ st.write(f'Total Salary: ${salary_sum:.2f}')
247
+ st.write(f'Total Median: {median_sum:.2f}')
248
+ st.write(f'Total Ownership: {own_sum:.2f}%')
249
+ st.write(f'Total LevX: {levx_sum:.2f}')
250
+
251
+ with tab1:
252
+ with st.container():
253
+ st.info("Advanced view includes all stats and thresholds, simple includes just basic columns for ease of use on mobile")
254
+ with st.container():
255
+ # First row - timestamp and reset button
256
+ col1, col2 = st.columns([3, 1])
257
+ with col1:
258
+ st.info(t_stamp)
259
+ with col2:
260
+ if st.button("Load/Reset Data", key='reset1'):
261
+ st.cache_data.clear()
262
+ dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog = load_overall_stats()
263
+ id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
264
+ dk_lineups = init_DK_lineups()
265
+ fd_lineups = init_FD_lineups()
266
+ t_stamp = f"Last Update: " + str(timestamp) + f" CST"
267
+ for key in st.session_state.keys():
268
+ del st.session_state[key]
269
+
270
+ # Second row - main options
271
+ col1, col2, col3, col4 = st.columns(4)
272
+ with col1:
273
+ view_var2 = st.radio("View Type", ('Simple', 'Advanced'), key='view_var2')
274
+ with col2:
275
+ site_var2 = st.radio("Site", ('Draftkings', 'Fanduel'), key='site_var2')
276
+
277
+ # Process site selection
278
+ if site_var2 == 'Draftkings':
279
+ site_baselines = roo_raw[roo_raw['site'] == 'Draftkings']
280
+ site_backlog = roo_backlog[roo_backlog['site'] == 'Draftkings']
281
+ elif site_var2 == 'Fanduel':
282
+ site_baselines = roo_raw[roo_raw['site'] == 'Fanduel']
283
+ site_backlog = roo_backlog[roo_backlog['site'] == 'Fanduel']
284
+ with col3:
285
+ slate_split = st.radio("Slate Type", ('Main Slate', 'Secondary', 'Backlog'), key='slate_split')
286
+
287
+ if slate_split == 'Main Slate':
288
+ raw_baselines = site_baselines[site_baselines['slate'] == 'Main Slate']
289
+ elif slate_split == 'Secondary':
290
+ raw_baselines = site_baselines[site_baselines['slate'] == 'Secondary Slate']
291
+ elif slate_split == 'Backlog':
292
+ raw_baselines = site_backlog
293
+ # Third row - backlog options
294
+ col1, col2 = st.columns(2)
295
+ with col1:
296
+ view_all = st.checkbox("View all dates?", key='view_all')
297
+ with col2:
298
+ if not view_all:
299
+ date_var2 = st.date_input("Select date", key='date_var2')
300
+
301
+ if view_all:
302
+ raw_baselines = raw_baselines.sort_values(by=['Median', 'Date'], ascending=[False, False])
303
+ else:
304
+ raw_baselines = raw_baselines[raw_baselines['Date'] == date_var2.strftime('%m-%d-%Y')]
305
+ raw_baselines = raw_baselines.sort_values(by='Median', ascending=False)
306
+
307
+ with col4:
308
+ split_var2 = st.radio("Slate Range", ('Full Slate Run', 'Specific Games'), key='split_var2')
309
+ if split_var2 == 'Specific Games':
310
+ team_var2 = st.multiselect('Select teams for ROO', options=raw_baselines['Team'].unique(), key='team_var2')
311
+ else:
312
+ team_var2 = raw_baselines.Team.values.tolist()
313
+
314
+ pos_var2 = st.selectbox('Position Filter', options=['All', 'PG', 'SG', 'SF', 'PF', 'C'], key='pos_var2')
315
+
316
+ display_container_1 = st.empty()
317
+ display_dl_container_1 = st.empty()
318
+ display_proj = raw_baselines[raw_baselines['Team'].isin(team_var2)]
319
+ if view_var2 == 'Advanced':
320
+ display_proj = display_proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
321
+ 'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX']]
322
+ elif view_var2 == 'Simple':
323
+ display_proj = display_proj[['Player', 'Position', 'Salary', 'Median', 'GPP%', 'Own']]
324
+ export_data = display_proj.copy()
325
+
326
+
327
+ display_proj = display_proj.set_index('Player')
328
+ st.session_state.display_proj = display_proj
329
+
330
+ with display_container_1:
331
+ display_container = st.empty()
332
+ if 'display_proj' in st.session_state:
333
+ if pos_var2 == 'All':
334
+ st.session_state.display_proj = st.session_state.display_proj
335
+ elif pos_var2 != 'All':
336
+ st.session_state.display_proj = st.session_state.display_proj[st.session_state.display_proj['Position'].str.contains(pos_var2)]
337
+ st.dataframe(st.session_state.display_proj.style.set_properties(**{'font-size': '6pt'}).background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(roo_format, precision=2), height=1000, use_container_width = True)
338
+
339
+ with display_dl_container_1:
340
+ display_dl_container = st.empty()
341
+ if 'display_proj' in st.session_state:
342
+ st.download_button(
343
+ label="Export Tables",
344
+ data=convert_df_to_csv(export_data),
345
+ file_name='NBA_ROO_export.csv',
346
+ mime='text/csv',
347
+ )
348
+
349
+ with tab2:
350
+ col1, col2 = st.columns([1, 7])
351
+ with col1:
352
+ if st.button("Load/Reset Data", key='reset2'):
353
+ st.cache_data.clear()
354
+ dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog = load_overall_stats()
355
+ dk_lineups = init_DK_lineups()
356
+ fd_lineups = init_FD_lineups()
357
+ t_stamp = f"Last Update: " + str(timestamp) + f" CST"
358
+ for key in st.session_state.keys():
359
+ del st.session_state[key]
360
+
361
+ slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Just the Main Slate'))
362
+ site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
363
+ lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1)
364
+
365
+ if site_var1 == 'Draftkings':
366
+ raw_baselines = dk_raw
367
+ ROO_slice = roo_raw[roo_raw['site'] == 'Draftkings']
368
+ id_dict = dict(zip(ROO_slice.Player, ROO_slice.player_ID))
369
+ # Get the minimum and maximum ownership values from dk_lineups
370
+ min_own = np.min(dk_lineups[:,14])
371
+ max_own = np.max(dk_lineups[:,14])
372
+ column_names = dk_columns
373
+
374
+ player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
375
+ if player_var1 == 'Specific Players':
376
+ player_var2 = st.multiselect('Which players do you want?', options = dk_raw['Player'].unique())
377
+ elif player_var1 == 'Full Slate':
378
+ player_var2 = dk_raw.Player.values.tolist()
379
+
380
+ elif site_var1 == 'Fanduel':
381
+ raw_baselines = fd_raw
382
+ ROO_slice = roo_raw[roo_raw['site'] == 'Fanduel']
383
+ id_dict = dict(zip(ROO_slice.Player, ROO_slice.player_ID))
384
+ min_own = np.min(fd_lineups[:,15])
385
+ max_own = np.max(fd_lineups[:,15])
386
+ column_names = fd_columns
387
+
388
+ player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
389
+ if player_var1 == 'Specific Players':
390
+ player_var2 = st.multiselect('Which players do you want?', options = fd_raw['Player'].unique())
391
+ elif player_var1 == 'Full Slate':
392
+ player_var2 = fd_raw.Player.values.tolist()
393
+
394
+ if st.button("Prepare data export", key='data_export'):
395
+ data_export = st.session_state.working_seed.copy()
396
+ if site_var1 == 'Draftkings':
397
+ for col_idx in range(8):
398
+ data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
399
+ elif site_var1 == 'Fanduel':
400
+ for col_idx in range(9):
401
+ data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
402
+ st.download_button(
403
+ label="Export optimals set",
404
+ data=convert_df(data_export),
405
+ file_name='NBA_optimals_export.csv',
406
+ mime='text/csv',
407
+ )
408
+ with col2:
409
+
410
+ if site_var1 == 'Draftkings':
411
+ if 'working_seed' in st.session_state:
412
+ st.session_state.working_seed = st.session_state.working_seed
413
+ if player_var1 == 'Specific Players':
414
+ st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
415
+ elif player_var1 == 'Full Slate':
416
+ st.session_state.working_seed = dk_lineups.copy()
417
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
418
+ elif 'working_seed' not in st.session_state:
419
+ st.session_state.working_seed = dk_lineups.copy()
420
+ st.session_state.working_seed = st.session_state.working_seed
421
+ if player_var1 == 'Specific Players':
422
+ st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
423
+ elif player_var1 == 'Full Slate':
424
+ st.session_state.working_seed = dk_lineups.copy()
425
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
426
+
427
+ elif site_var1 == 'Fanduel':
428
+ if 'working_seed' in st.session_state:
429
+ st.session_state.working_seed = st.session_state.working_seed
430
+ if player_var1 == 'Specific Players':
431
+ st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
432
+ elif player_var1 == 'Full Slate':
433
+ st.session_state.working_seed = fd_lineups.copy()
434
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
435
+ elif 'working_seed' not in st.session_state:
436
+ st.session_state.working_seed = fd_lineups.copy()
437
+ st.session_state.working_seed = st.session_state.working_seed
438
+ if player_var1 == 'Specific Players':
439
+ st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
440
+ elif player_var1 == 'Full Slate':
441
+ st.session_state.working_seed = fd_lineups.copy()
442
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
443
+
444
+ export_file = st.session_state.data_export_display.copy()
445
+ if site_var1 == 'Draftkings':
446
+ for col_idx in range(8):
447
+ export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
448
+ elif site_var1 == 'Fanduel':
449
+ for col_idx in range(9):
450
+ export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
451
+
452
+ with st.container():
453
+ if st.button("Reset Optimals", key='reset3'):
454
+ for key in st.session_state.keys():
455
+ del st.session_state[key]
456
+ if site_var1 == 'Draftkings':
457
+ st.session_state.working_seed = dk_lineups.copy()
458
+ elif site_var1 == 'Fanduel':
459
+ st.session_state.working_seed = fd_lineups.copy()
460
+ if 'data_export_display' in st.session_state:
461
+ st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)
462
+ st.download_button(
463
+ label="Export display optimals",
464
+ data=convert_df(export_file),
465
+ file_name='NBA_display_optimals.csv',
466
+ mime='text/csv',
467
+ )
468
+
469
+ with st.container():
470
+ if 'working_seed' in st.session_state:
471
+ # Create a new dataframe with summary statistics
472
+ if site_var1 == 'Draftkings':
473
+ summary_df = pd.DataFrame({
474
+ 'Metric': ['Min', 'Average', 'Max', 'STDdev'],
475
+ 'Salary': [
476
+ np.min(st.session_state.working_seed[:,8]),
477
+ np.mean(st.session_state.working_seed[:,8]),
478
+ np.max(st.session_state.working_seed[:,8]),
479
+ np.std(st.session_state.working_seed[:,8])
480
+ ],
481
+ 'Proj': [
482
+ np.min(st.session_state.working_seed[:,9]),
483
+ np.mean(st.session_state.working_seed[:,9]),
484
+ np.max(st.session_state.working_seed[:,9]),
485
+ np.std(st.session_state.working_seed[:,9])
486
+ ],
487
+ 'Own': [
488
+ np.min(st.session_state.working_seed[:,14]),
489
+ np.mean(st.session_state.working_seed[:,14]),
490
+ np.max(st.session_state.working_seed[:,14]),
491
+ np.std(st.session_state.working_seed[:,14])
492
+ ]
493
+ })
494
+ elif site_var1 == 'Fanduel':
495
+ summary_df = pd.DataFrame({
496
+ 'Metric': ['Min', 'Average', 'Max', 'STDdev'],
497
+ 'Salary': [
498
+ np.min(st.session_state.working_seed[:,9]),
499
+ np.mean(st.session_state.working_seed[:,9]),
500
+ np.max(st.session_state.working_seed[:,9]),
501
+ np.std(st.session_state.working_seed[:,9])
502
+ ],
503
+ 'Proj': [
504
+ np.min(st.session_state.working_seed[:,10]),
505
+ np.mean(st.session_state.working_seed[:,10]),
506
+ np.max(st.session_state.working_seed[:,10]),
507
+ np.std(st.session_state.working_seed[:,10])
508
+ ],
509
+ 'Own': [
510
+ np.min(st.session_state.working_seed[:,15]),
511
+ np.mean(st.session_state.working_seed[:,15]),
512
+ np.max(st.session_state.working_seed[:,15]),
513
+ np.std(st.session_state.working_seed[:,15])
514
+ ]
515
+ })
516
+
517
+ # Set the index of the summary dataframe as the "Metric" column
518
+ summary_df = summary_df.set_index('Metric')
519
+
520
+ # Display the summary dataframe
521
+ st.subheader("Optimal Statistics")
522
+ st.dataframe(summary_df.style.format({
523
+ 'Salary': '{:.2f}',
524
+ 'Proj': '{:.2f}',
525
+ 'Own': '{:.2f}'
526
+ }).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True)
527
+
528
+ with st.container():
529
+ tab1, tab2 = st.tabs(["Display Frequency", "Seed Frame Frequency"])
530
+ with tab1:
531
+ if 'data_export_display' in st.session_state:
532
+ if site_var1 == 'Draftkings':
533
+ player_columns = st.session_state.data_export_display.iloc[:, :8]
534
+ elif site_var1 == 'Fanduel':
535
+ player_columns = st.session_state.data_export_display.iloc[:, :9]
536
+
537
+ # Flatten the DataFrame and count unique values
538
+ value_counts = player_columns.values.flatten().tolist()
539
+ value_counts = pd.Series(value_counts).value_counts()
540
+
541
+ percentages = (value_counts / lineup_num_var * 100).round(2)
542
+
543
+ # Create a DataFrame with the results
544
+ summary_df = pd.DataFrame({
545
+ 'Player': value_counts.index,
546
+ 'Salary': [salary_dict.get(player, player) for player in value_counts.index],
547
+ 'Frequency': value_counts.values,
548
+ 'Percentage': percentages.values
549
+ })
550
+
551
+ # Sort by frequency in descending order
552
+ summary_df = summary_df.sort_values('Frequency', ascending=False)
553
+
554
+ # Display the table
555
+ st.write("Player Frequency Table:")
556
+ st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}, precision=2), height=500, use_container_width=True)
557
+
558
+ st.download_button(
559
+ label="Export player frequency",
560
+ data=convert_df_to_csv(summary_df),
561
+ file_name='NBA_player_frequency.csv',
562
+ mime='text/csv',
563
+ )
564
+ with tab2:
565
+ if 'working_seed' in st.session_state:
566
+ if site_var1 == 'Draftkings':
567
+ player_columns = st.session_state.working_seed[:, :8]
568
+ elif site_var1 == 'Fanduel':
569
+ player_columns = st.session_state.working_seed[:, :9]
570
+
571
+ # Flatten the DataFrame and count unique values
572
+ value_counts = player_columns.flatten().tolist()
573
+ value_counts = pd.Series(value_counts).value_counts()
574
+
575
+ percentages = (value_counts / len(st.session_state.working_seed) * 100).round(2)
576
+ # Create a DataFrame with the results
577
+ summary_df = pd.DataFrame({
578
+ 'Player': value_counts.index,
579
+ 'Salary': [salary_dict.get(player, player) for player in value_counts.index],
580
+ 'Frequency': value_counts.values,
581
+ 'Percentage': percentages.values
582
+ })
583
+
584
+ # Sort by frequency in descending order
585
+ summary_df = summary_df.sort_values('Frequency', ascending=False)
586
+
587
+ # Display the table
588
+ st.write("Seed Frame Frequency Table:")
589
+ st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}, precision=2), height=500, use_container_width=True)
590
+
591
+ st.download_button(
592
+ label="Export seed frame frequency",
593
+ data=convert_df_to_csv(summary_df),
594
+ file_name='NBA_seed_frame_frequency.csv',
595
+ mime='text/csv',
596
+ )
app.yaml ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ runtime: python
2
+ env: flex
3
+
4
+ runtime_config:
5
+ python_version: 3
6
+
7
+ entrypoint: streamlit run streamlit-app.py --server.port $PORT
8
+
9
+ automatic_scaling:
10
+ max_num_instances: 2500
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ streamlit
2
+ gspread
3
+ openpyxl
4
+ matplotlib
5
+ pymongo
6
+ pulp
7
+ docker
8
+ plotly
9
+ scipy