Spaces:
Sleeping
Sleeping
James McCool
commited on
Commit
·
a16fe9a
1
Parent(s):
e080880
Initial commit for structure
Browse files- app.py +596 -0
- app.yaml +10 -0
- requirements.txt +9 -0
app.py
ADDED
@@ -0,0 +1,596 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import streamlit as st
|
5 |
+
import gspread
|
6 |
+
import pymongo
|
7 |
+
|
8 |
+
st.set_page_config(layout="wide")
|
9 |
+
|
10 |
+
@st.cache_resource
|
11 |
+
def init_conn():
|
12 |
+
|
13 |
+
uri = st.secrets['mongo_uri']
|
14 |
+
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
|
15 |
+
db = client["NBA_DFS"]
|
16 |
+
|
17 |
+
return db
|
18 |
+
|
19 |
+
db = init_conn()
|
20 |
+
|
21 |
+
dk_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
22 |
+
fd_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
|
23 |
+
|
24 |
+
roo_format = {'Top_finish': '{:.2%}', 'Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '4x%': '{:.2%}', '5x%': '{:.2%}', '6x%': '{:.2%}', 'GPP%': '{:.2%}'}
|
25 |
+
|
26 |
+
@st.cache_data(ttl=60)
|
27 |
+
def load_overall_stats():
|
28 |
+
collection = db["DK_Player_Stats"]
|
29 |
+
cursor = collection.find()
|
30 |
+
|
31 |
+
raw_display = pd.DataFrame(list(cursor))
|
32 |
+
raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
|
33 |
+
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
|
34 |
+
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
|
35 |
+
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
36 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
37 |
+
dk_raw = raw_display.sort_values(by='Median', ascending=False)
|
38 |
+
|
39 |
+
collection = db["FD_Player_Stats"]
|
40 |
+
cursor = collection.find()
|
41 |
+
|
42 |
+
raw_display = pd.DataFrame(list(cursor))
|
43 |
+
raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
|
44 |
+
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
|
45 |
+
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
|
46 |
+
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
47 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
48 |
+
fd_raw = raw_display.sort_values(by='Median', ascending=False)
|
49 |
+
|
50 |
+
collection = db["Secondary_DK_Player_Stats"]
|
51 |
+
cursor = collection.find()
|
52 |
+
|
53 |
+
raw_display = pd.DataFrame(list(cursor))
|
54 |
+
raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
|
55 |
+
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
|
56 |
+
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
|
57 |
+
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
58 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
59 |
+
dk_raw_sec = raw_display.sort_values(by='Median', ascending=False)
|
60 |
+
|
61 |
+
collection = db["Secondary_FD_Player_Stats"]
|
62 |
+
cursor = collection.find()
|
63 |
+
|
64 |
+
raw_display = pd.DataFrame(list(cursor))
|
65 |
+
raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
|
66 |
+
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
|
67 |
+
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
|
68 |
+
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
69 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
70 |
+
fd_raw_sec = raw_display.sort_values(by='Median', ascending=False)
|
71 |
+
|
72 |
+
collection = db["Player_Range_Of_Outcomes"]
|
73 |
+
cursor = collection.find()
|
74 |
+
|
75 |
+
raw_display = pd.DataFrame(list(cursor))
|
76 |
+
raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
|
77 |
+
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_ID']]
|
78 |
+
raw_display = raw_display.loc[raw_display['Median'] > 0]
|
79 |
+
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
|
80 |
+
roo_raw = raw_display.sort_values(by='Median', ascending=False)
|
81 |
+
|
82 |
+
timestamp = raw_display['timestamp'].values[0]
|
83 |
+
|
84 |
+
collection = db["Range_Of_Outcomes_Backlog"]
|
85 |
+
cursor = collection.find()
|
86 |
+
|
87 |
+
raw_display = pd.DataFrame(list(cursor))
|
88 |
+
raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
|
89 |
+
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'Date']]
|
90 |
+
roo_backlog = raw_display.sort_values(by='Date', ascending=False)
|
91 |
+
roo_backlog = roo_backlog[roo_backlog['slate'] == 'Main Slate']
|
92 |
+
|
93 |
+
return dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog
|
94 |
+
|
95 |
+
@st.cache_data(ttl = 60)
|
96 |
+
def init_DK_lineups():
|
97 |
+
|
98 |
+
collection = db['DK_NBA_name_map']
|
99 |
+
cursor = collection.find()
|
100 |
+
raw_data = pd.DataFrame(list(cursor))
|
101 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
102 |
+
|
103 |
+
collection = db["DK_NBA_seed_frame"]
|
104 |
+
cursor = collection.find().limit(10000)
|
105 |
+
|
106 |
+
raw_display = pd.DataFrame(list(cursor))
|
107 |
+
raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
108 |
+
dict_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX']
|
109 |
+
for col in dict_columns:
|
110 |
+
raw_display[col] = raw_display[col].map(names_dict)
|
111 |
+
DK_seed = raw_display.to_numpy()
|
112 |
+
|
113 |
+
return DK_seed
|
114 |
+
|
115 |
+
@st.cache_data(ttl = 60)
|
116 |
+
def init_FD_lineups():
|
117 |
+
|
118 |
+
collection = db['FD_NBA_name_map']
|
119 |
+
cursor = collection.find()
|
120 |
+
raw_data = pd.DataFrame(list(cursor))
|
121 |
+
names_dict = dict(zip(raw_data['key'], raw_data['value']))
|
122 |
+
|
123 |
+
collection = db["FD_NBA_seed_frame"]
|
124 |
+
cursor = collection.find().limit(10000)
|
125 |
+
|
126 |
+
raw_display = pd.DataFrame(list(cursor))
|
127 |
+
raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
|
128 |
+
dict_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1']
|
129 |
+
for col in dict_columns:
|
130 |
+
raw_display[col] = raw_display[col].map(names_dict)
|
131 |
+
FD_seed = raw_display.to_numpy()
|
132 |
+
|
133 |
+
return FD_seed
|
134 |
+
|
135 |
+
def convert_df_to_csv(df):
|
136 |
+
return df.to_csv().encode('utf-8')
|
137 |
+
|
138 |
+
@st.cache_data
|
139 |
+
def convert_df(array):
|
140 |
+
array = pd.DataFrame(array, columns=column_names)
|
141 |
+
return array.to_csv().encode('utf-8')
|
142 |
+
|
143 |
+
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog = load_overall_stats()
|
144 |
+
salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
|
145 |
+
|
146 |
+
try:
|
147 |
+
dk_lineups = init_DK_lineups()
|
148 |
+
fd_lineups = init_FD_lineups()
|
149 |
+
except:
|
150 |
+
dk_lineups = pd.DataFrame(columns=dk_columns)
|
151 |
+
fd_lineups = pd.DataFrame(columns=fd_columns)
|
152 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
153 |
+
|
154 |
+
tab1, tab2 = st.tabs(['Range of Outcomes', 'Optimals'])
|
155 |
+
|
156 |
+
with st.sidebar:
|
157 |
+
st.header("Quick Builder")
|
158 |
+
st.info("This is a quick hand building helper to give you some basic info about player combos and lineup feasibility")
|
159 |
+
sidebar_site = st.selectbox("What site are you running?", ('Draftkings', 'Fanduel'), key='sidebar_site')
|
160 |
+
sidebar_slate = st.selectbox("What slate are you running?", ('Main Slate', 'Secondary Slate'), key='sidebar_slate')
|
161 |
+
|
162 |
+
if sidebar_site == 'Draftkings':
|
163 |
+
roo_sample = roo_raw[roo_raw['slate'] == str(sidebar_slate)]
|
164 |
+
roo_sample = roo_sample[roo_sample['site'] == 'Draftkings']
|
165 |
+
roo_sample = roo_sample.sort_values(by='Own', ascending=False)
|
166 |
+
selected_pg = []
|
167 |
+
selected_sg = []
|
168 |
+
selected_sf = []
|
169 |
+
selected_pf = []
|
170 |
+
selected_c = []
|
171 |
+
selected_g = []
|
172 |
+
selected_f = []
|
173 |
+
selected_flex = []
|
174 |
+
elif sidebar_site == 'Fanduel':
|
175 |
+
roo_sample = roo_raw[roo_raw['slate'] == str(sidebar_slate)]
|
176 |
+
roo_sample = roo_sample[roo_sample['site'] == 'Fanduel']
|
177 |
+
roo_sample = roo_sample.sort_values(by='Own', ascending=False)
|
178 |
+
selected_pg1 = []
|
179 |
+
selected_pg2 = []
|
180 |
+
selected_sg1 = []
|
181 |
+
selected_sg2 = []
|
182 |
+
selected_sf1 = []
|
183 |
+
selected_sf2 = []
|
184 |
+
selected_pf1 = []
|
185 |
+
selected_pf2 = []
|
186 |
+
selected_c1 = []
|
187 |
+
|
188 |
+
# Get unique players by position from dk_roo_raw
|
189 |
+
pgs = roo_sample[roo_sample['Position'].str.contains('PG')]['Player'].unique()
|
190 |
+
sgs = roo_sample[roo_sample['Position'].str.contains('SG')]['Player'].unique()
|
191 |
+
sfs = roo_sample[roo_sample['Position'].str.contains('SF')]['Player'].unique()
|
192 |
+
pfs = roo_sample[roo_sample['Position'].str.contains('PF')]['Player'].unique()
|
193 |
+
centers = roo_sample[roo_sample['Position'].str.contains('C')]['Player'].unique()
|
194 |
+
guards = roo_sample[roo_sample['Position'].str.contains('G')]['Player'].unique()
|
195 |
+
forwards = roo_sample[roo_sample['Position'].str.contains('F')]['Player'].unique()
|
196 |
+
flex = roo_sample['Player'].unique()
|
197 |
+
|
198 |
+
if sidebar_site == 'Draftkings':
|
199 |
+
selected_pgs = st.multiselect('Select PG:', list(pgs), default=None, placeholder='Select PG', label_visibility='collapsed', key='pg1')
|
200 |
+
selected_sgs = st.multiselect('Select SG:', list(sgs), default=None, placeholder='Select SG', label_visibility='collapsed', key='sg1')
|
201 |
+
selected_sfs = st.multiselect('Select SF:', list(sfs), default=None, placeholder='Select SF', label_visibility='collapsed', key='sf1')
|
202 |
+
selected_pfs = st.multiselect('Select PF:', list(pfs), default=None, placeholder='Select PF', label_visibility='collapsed', key='pf1')
|
203 |
+
selected_cs = st.multiselect('Select C:', list(centers), default=None, placeholder='Select C', label_visibility='collapsed', key='c1')
|
204 |
+
selected_g = st.multiselect('Select G:', list(guards), default=None, placeholder='Select G', label_visibility='collapsed', key='g')
|
205 |
+
selected_f = st.multiselect('Select F:', list(forwards), default=None, placeholder='Select F', label_visibility='collapsed', key='f')
|
206 |
+
selected_flex = st.multiselect('Select Flex:', list(flex), default=None, placeholder='Select Flex', label_visibility='collapsed', key='flex')
|
207 |
+
|
208 |
+
# Combine all selected players
|
209 |
+
all_selected = selected_pgs + selected_sgs + selected_sfs + selected_pfs + selected_cs + selected_g + selected_f + selected_flex
|
210 |
+
|
211 |
+
elif sidebar_site == 'Fanduel':
|
212 |
+
selected_pg1 = st.multiselect('Select PG1:', list(pgs), default=None, placeholder='Select PG1', label_visibility='collapsed', key='pg1')
|
213 |
+
selected_pg2 = st.multiselect('Select PG2:', list(pgs), default=None, placeholder='Select PG2', label_visibility='collapsed', key='pg2')
|
214 |
+
selected_sg1 = st.multiselect('Select SG1:', list(sgs), default=None, placeholder='Select SG1', label_visibility='collapsed', key='sg1')
|
215 |
+
selected_sg2 = st.multiselect('Select SG2:', list(sgs), default=None, placeholder='Select SG2', label_visibility='collapsed', key='sg2')
|
216 |
+
selected_sf1 = st.multiselect('Select SF1:', list(sfs), default=None, placeholder='Select SF1', label_visibility='collapsed', key='sf1')
|
217 |
+
selected_sf2 = st.multiselect('Select SF2:', list(sfs), default=None, placeholder='Select SF2', label_visibility='collapsed', key='sf2')
|
218 |
+
selected_pf1 = st.multiselect('Select PF1:', list(pfs), default=None, placeholder='Select PF1', label_visibility='collapsed', key='pf1')
|
219 |
+
selected_pf2 = st.multiselect('Select PF2:', list(pfs), default=None, placeholder='Select PF2', label_visibility='collapsed', key='pf2')
|
220 |
+
selected_c1 = st.multiselect('Select C1:', list(centers), default=None, placeholder='Select C1', label_visibility='collapsed', key='c1')
|
221 |
+
|
222 |
+
# Combine all selected players
|
223 |
+
all_selected = selected_pg1 + selected_pg2 + selected_sg1 + selected_sg2 + selected_sf1 + selected_sf2 + selected_pf1 + selected_pf2 + selected_c1
|
224 |
+
|
225 |
+
if all_selected:
|
226 |
+
# Get stats for selected players
|
227 |
+
selected_stats = roo_sample[roo_sample['Player'].isin(all_selected)]
|
228 |
+
|
229 |
+
# Calculate sums
|
230 |
+
salary_sum = selected_stats['Salary'].sum()
|
231 |
+
median_sum = selected_stats['Median'].sum()
|
232 |
+
own_sum = selected_stats['Own'].sum()
|
233 |
+
levx_sum = selected_stats['LevX'].sum()
|
234 |
+
|
235 |
+
# Display sums
|
236 |
+
st.write('---')
|
237 |
+
if sidebar_site == 'Draftkings':
|
238 |
+
if salary_sum > 50000:
|
239 |
+
st.warning(f'Total Salary: ${salary_sum:.2f} exceeds limit of $50,000')
|
240 |
+
else:
|
241 |
+
st.write(f'Total Salary: ${salary_sum:.2f}')
|
242 |
+
elif sidebar_site == 'Fanduel':
|
243 |
+
if salary_sum > 60000:
|
244 |
+
st.warning(f'Total Salary: ${salary_sum:.2f} exceeds limit of $60,000')
|
245 |
+
else:
|
246 |
+
st.write(f'Total Salary: ${salary_sum:.2f}')
|
247 |
+
st.write(f'Total Median: {median_sum:.2f}')
|
248 |
+
st.write(f'Total Ownership: {own_sum:.2f}%')
|
249 |
+
st.write(f'Total LevX: {levx_sum:.2f}')
|
250 |
+
|
251 |
+
with tab1:
|
252 |
+
with st.container():
|
253 |
+
st.info("Advanced view includes all stats and thresholds, simple includes just basic columns for ease of use on mobile")
|
254 |
+
with st.container():
|
255 |
+
# First row - timestamp and reset button
|
256 |
+
col1, col2 = st.columns([3, 1])
|
257 |
+
with col1:
|
258 |
+
st.info(t_stamp)
|
259 |
+
with col2:
|
260 |
+
if st.button("Load/Reset Data", key='reset1'):
|
261 |
+
st.cache_data.clear()
|
262 |
+
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog = load_overall_stats()
|
263 |
+
id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
|
264 |
+
dk_lineups = init_DK_lineups()
|
265 |
+
fd_lineups = init_FD_lineups()
|
266 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
267 |
+
for key in st.session_state.keys():
|
268 |
+
del st.session_state[key]
|
269 |
+
|
270 |
+
# Second row - main options
|
271 |
+
col1, col2, col3, col4 = st.columns(4)
|
272 |
+
with col1:
|
273 |
+
view_var2 = st.radio("View Type", ('Simple', 'Advanced'), key='view_var2')
|
274 |
+
with col2:
|
275 |
+
site_var2 = st.radio("Site", ('Draftkings', 'Fanduel'), key='site_var2')
|
276 |
+
|
277 |
+
# Process site selection
|
278 |
+
if site_var2 == 'Draftkings':
|
279 |
+
site_baselines = roo_raw[roo_raw['site'] == 'Draftkings']
|
280 |
+
site_backlog = roo_backlog[roo_backlog['site'] == 'Draftkings']
|
281 |
+
elif site_var2 == 'Fanduel':
|
282 |
+
site_baselines = roo_raw[roo_raw['site'] == 'Fanduel']
|
283 |
+
site_backlog = roo_backlog[roo_backlog['site'] == 'Fanduel']
|
284 |
+
with col3:
|
285 |
+
slate_split = st.radio("Slate Type", ('Main Slate', 'Secondary', 'Backlog'), key='slate_split')
|
286 |
+
|
287 |
+
if slate_split == 'Main Slate':
|
288 |
+
raw_baselines = site_baselines[site_baselines['slate'] == 'Main Slate']
|
289 |
+
elif slate_split == 'Secondary':
|
290 |
+
raw_baselines = site_baselines[site_baselines['slate'] == 'Secondary Slate']
|
291 |
+
elif slate_split == 'Backlog':
|
292 |
+
raw_baselines = site_backlog
|
293 |
+
# Third row - backlog options
|
294 |
+
col1, col2 = st.columns(2)
|
295 |
+
with col1:
|
296 |
+
view_all = st.checkbox("View all dates?", key='view_all')
|
297 |
+
with col2:
|
298 |
+
if not view_all:
|
299 |
+
date_var2 = st.date_input("Select date", key='date_var2')
|
300 |
+
|
301 |
+
if view_all:
|
302 |
+
raw_baselines = raw_baselines.sort_values(by=['Median', 'Date'], ascending=[False, False])
|
303 |
+
else:
|
304 |
+
raw_baselines = raw_baselines[raw_baselines['Date'] == date_var2.strftime('%m-%d-%Y')]
|
305 |
+
raw_baselines = raw_baselines.sort_values(by='Median', ascending=False)
|
306 |
+
|
307 |
+
with col4:
|
308 |
+
split_var2 = st.radio("Slate Range", ('Full Slate Run', 'Specific Games'), key='split_var2')
|
309 |
+
if split_var2 == 'Specific Games':
|
310 |
+
team_var2 = st.multiselect('Select teams for ROO', options=raw_baselines['Team'].unique(), key='team_var2')
|
311 |
+
else:
|
312 |
+
team_var2 = raw_baselines.Team.values.tolist()
|
313 |
+
|
314 |
+
pos_var2 = st.selectbox('Position Filter', options=['All', 'PG', 'SG', 'SF', 'PF', 'C'], key='pos_var2')
|
315 |
+
|
316 |
+
display_container_1 = st.empty()
|
317 |
+
display_dl_container_1 = st.empty()
|
318 |
+
display_proj = raw_baselines[raw_baselines['Team'].isin(team_var2)]
|
319 |
+
if view_var2 == 'Advanced':
|
320 |
+
display_proj = display_proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
|
321 |
+
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX']]
|
322 |
+
elif view_var2 == 'Simple':
|
323 |
+
display_proj = display_proj[['Player', 'Position', 'Salary', 'Median', 'GPP%', 'Own']]
|
324 |
+
export_data = display_proj.copy()
|
325 |
+
|
326 |
+
|
327 |
+
display_proj = display_proj.set_index('Player')
|
328 |
+
st.session_state.display_proj = display_proj
|
329 |
+
|
330 |
+
with display_container_1:
|
331 |
+
display_container = st.empty()
|
332 |
+
if 'display_proj' in st.session_state:
|
333 |
+
if pos_var2 == 'All':
|
334 |
+
st.session_state.display_proj = st.session_state.display_proj
|
335 |
+
elif pos_var2 != 'All':
|
336 |
+
st.session_state.display_proj = st.session_state.display_proj[st.session_state.display_proj['Position'].str.contains(pos_var2)]
|
337 |
+
st.dataframe(st.session_state.display_proj.style.set_properties(**{'font-size': '6pt'}).background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(roo_format, precision=2), height=1000, use_container_width = True)
|
338 |
+
|
339 |
+
with display_dl_container_1:
|
340 |
+
display_dl_container = st.empty()
|
341 |
+
if 'display_proj' in st.session_state:
|
342 |
+
st.download_button(
|
343 |
+
label="Export Tables",
|
344 |
+
data=convert_df_to_csv(export_data),
|
345 |
+
file_name='NBA_ROO_export.csv',
|
346 |
+
mime='text/csv',
|
347 |
+
)
|
348 |
+
|
349 |
+
with tab2:
|
350 |
+
col1, col2 = st.columns([1, 7])
|
351 |
+
with col1:
|
352 |
+
if st.button("Load/Reset Data", key='reset2'):
|
353 |
+
st.cache_data.clear()
|
354 |
+
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog = load_overall_stats()
|
355 |
+
dk_lineups = init_DK_lineups()
|
356 |
+
fd_lineups = init_FD_lineups()
|
357 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
358 |
+
for key in st.session_state.keys():
|
359 |
+
del st.session_state[key]
|
360 |
+
|
361 |
+
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Just the Main Slate'))
|
362 |
+
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
|
363 |
+
lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1)
|
364 |
+
|
365 |
+
if site_var1 == 'Draftkings':
|
366 |
+
raw_baselines = dk_raw
|
367 |
+
ROO_slice = roo_raw[roo_raw['site'] == 'Draftkings']
|
368 |
+
id_dict = dict(zip(ROO_slice.Player, ROO_slice.player_ID))
|
369 |
+
# Get the minimum and maximum ownership values from dk_lineups
|
370 |
+
min_own = np.min(dk_lineups[:,14])
|
371 |
+
max_own = np.max(dk_lineups[:,14])
|
372 |
+
column_names = dk_columns
|
373 |
+
|
374 |
+
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
|
375 |
+
if player_var1 == 'Specific Players':
|
376 |
+
player_var2 = st.multiselect('Which players do you want?', options = dk_raw['Player'].unique())
|
377 |
+
elif player_var1 == 'Full Slate':
|
378 |
+
player_var2 = dk_raw.Player.values.tolist()
|
379 |
+
|
380 |
+
elif site_var1 == 'Fanduel':
|
381 |
+
raw_baselines = fd_raw
|
382 |
+
ROO_slice = roo_raw[roo_raw['site'] == 'Fanduel']
|
383 |
+
id_dict = dict(zip(ROO_slice.Player, ROO_slice.player_ID))
|
384 |
+
min_own = np.min(fd_lineups[:,15])
|
385 |
+
max_own = np.max(fd_lineups[:,15])
|
386 |
+
column_names = fd_columns
|
387 |
+
|
388 |
+
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
|
389 |
+
if player_var1 == 'Specific Players':
|
390 |
+
player_var2 = st.multiselect('Which players do you want?', options = fd_raw['Player'].unique())
|
391 |
+
elif player_var1 == 'Full Slate':
|
392 |
+
player_var2 = fd_raw.Player.values.tolist()
|
393 |
+
|
394 |
+
if st.button("Prepare data export", key='data_export'):
|
395 |
+
data_export = st.session_state.working_seed.copy()
|
396 |
+
if site_var1 == 'Draftkings':
|
397 |
+
for col_idx in range(8):
|
398 |
+
data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
|
399 |
+
elif site_var1 == 'Fanduel':
|
400 |
+
for col_idx in range(9):
|
401 |
+
data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
|
402 |
+
st.download_button(
|
403 |
+
label="Export optimals set",
|
404 |
+
data=convert_df(data_export),
|
405 |
+
file_name='NBA_optimals_export.csv',
|
406 |
+
mime='text/csv',
|
407 |
+
)
|
408 |
+
with col2:
|
409 |
+
|
410 |
+
if site_var1 == 'Draftkings':
|
411 |
+
if 'working_seed' in st.session_state:
|
412 |
+
st.session_state.working_seed = st.session_state.working_seed
|
413 |
+
if player_var1 == 'Specific Players':
|
414 |
+
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
|
415 |
+
elif player_var1 == 'Full Slate':
|
416 |
+
st.session_state.working_seed = dk_lineups.copy()
|
417 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
418 |
+
elif 'working_seed' not in st.session_state:
|
419 |
+
st.session_state.working_seed = dk_lineups.copy()
|
420 |
+
st.session_state.working_seed = st.session_state.working_seed
|
421 |
+
if player_var1 == 'Specific Players':
|
422 |
+
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
|
423 |
+
elif player_var1 == 'Full Slate':
|
424 |
+
st.session_state.working_seed = dk_lineups.copy()
|
425 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
426 |
+
|
427 |
+
elif site_var1 == 'Fanduel':
|
428 |
+
if 'working_seed' in st.session_state:
|
429 |
+
st.session_state.working_seed = st.session_state.working_seed
|
430 |
+
if player_var1 == 'Specific Players':
|
431 |
+
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
|
432 |
+
elif player_var1 == 'Full Slate':
|
433 |
+
st.session_state.working_seed = fd_lineups.copy()
|
434 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
435 |
+
elif 'working_seed' not in st.session_state:
|
436 |
+
st.session_state.working_seed = fd_lineups.copy()
|
437 |
+
st.session_state.working_seed = st.session_state.working_seed
|
438 |
+
if player_var1 == 'Specific Players':
|
439 |
+
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
|
440 |
+
elif player_var1 == 'Full Slate':
|
441 |
+
st.session_state.working_seed = fd_lineups.copy()
|
442 |
+
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
|
443 |
+
|
444 |
+
export_file = st.session_state.data_export_display.copy()
|
445 |
+
if site_var1 == 'Draftkings':
|
446 |
+
for col_idx in range(8):
|
447 |
+
export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
|
448 |
+
elif site_var1 == 'Fanduel':
|
449 |
+
for col_idx in range(9):
|
450 |
+
export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
|
451 |
+
|
452 |
+
with st.container():
|
453 |
+
if st.button("Reset Optimals", key='reset3'):
|
454 |
+
for key in st.session_state.keys():
|
455 |
+
del st.session_state[key]
|
456 |
+
if site_var1 == 'Draftkings':
|
457 |
+
st.session_state.working_seed = dk_lineups.copy()
|
458 |
+
elif site_var1 == 'Fanduel':
|
459 |
+
st.session_state.working_seed = fd_lineups.copy()
|
460 |
+
if 'data_export_display' in st.session_state:
|
461 |
+
st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)
|
462 |
+
st.download_button(
|
463 |
+
label="Export display optimals",
|
464 |
+
data=convert_df(export_file),
|
465 |
+
file_name='NBA_display_optimals.csv',
|
466 |
+
mime='text/csv',
|
467 |
+
)
|
468 |
+
|
469 |
+
with st.container():
|
470 |
+
if 'working_seed' in st.session_state:
|
471 |
+
# Create a new dataframe with summary statistics
|
472 |
+
if site_var1 == 'Draftkings':
|
473 |
+
summary_df = pd.DataFrame({
|
474 |
+
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
|
475 |
+
'Salary': [
|
476 |
+
np.min(st.session_state.working_seed[:,8]),
|
477 |
+
np.mean(st.session_state.working_seed[:,8]),
|
478 |
+
np.max(st.session_state.working_seed[:,8]),
|
479 |
+
np.std(st.session_state.working_seed[:,8])
|
480 |
+
],
|
481 |
+
'Proj': [
|
482 |
+
np.min(st.session_state.working_seed[:,9]),
|
483 |
+
np.mean(st.session_state.working_seed[:,9]),
|
484 |
+
np.max(st.session_state.working_seed[:,9]),
|
485 |
+
np.std(st.session_state.working_seed[:,9])
|
486 |
+
],
|
487 |
+
'Own': [
|
488 |
+
np.min(st.session_state.working_seed[:,14]),
|
489 |
+
np.mean(st.session_state.working_seed[:,14]),
|
490 |
+
np.max(st.session_state.working_seed[:,14]),
|
491 |
+
np.std(st.session_state.working_seed[:,14])
|
492 |
+
]
|
493 |
+
})
|
494 |
+
elif site_var1 == 'Fanduel':
|
495 |
+
summary_df = pd.DataFrame({
|
496 |
+
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
|
497 |
+
'Salary': [
|
498 |
+
np.min(st.session_state.working_seed[:,9]),
|
499 |
+
np.mean(st.session_state.working_seed[:,9]),
|
500 |
+
np.max(st.session_state.working_seed[:,9]),
|
501 |
+
np.std(st.session_state.working_seed[:,9])
|
502 |
+
],
|
503 |
+
'Proj': [
|
504 |
+
np.min(st.session_state.working_seed[:,10]),
|
505 |
+
np.mean(st.session_state.working_seed[:,10]),
|
506 |
+
np.max(st.session_state.working_seed[:,10]),
|
507 |
+
np.std(st.session_state.working_seed[:,10])
|
508 |
+
],
|
509 |
+
'Own': [
|
510 |
+
np.min(st.session_state.working_seed[:,15]),
|
511 |
+
np.mean(st.session_state.working_seed[:,15]),
|
512 |
+
np.max(st.session_state.working_seed[:,15]),
|
513 |
+
np.std(st.session_state.working_seed[:,15])
|
514 |
+
]
|
515 |
+
})
|
516 |
+
|
517 |
+
# Set the index of the summary dataframe as the "Metric" column
|
518 |
+
summary_df = summary_df.set_index('Metric')
|
519 |
+
|
520 |
+
# Display the summary dataframe
|
521 |
+
st.subheader("Optimal Statistics")
|
522 |
+
st.dataframe(summary_df.style.format({
|
523 |
+
'Salary': '{:.2f}',
|
524 |
+
'Proj': '{:.2f}',
|
525 |
+
'Own': '{:.2f}'
|
526 |
+
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True)
|
527 |
+
|
528 |
+
with st.container():
|
529 |
+
tab1, tab2 = st.tabs(["Display Frequency", "Seed Frame Frequency"])
|
530 |
+
with tab1:
|
531 |
+
if 'data_export_display' in st.session_state:
|
532 |
+
if site_var1 == 'Draftkings':
|
533 |
+
player_columns = st.session_state.data_export_display.iloc[:, :8]
|
534 |
+
elif site_var1 == 'Fanduel':
|
535 |
+
player_columns = st.session_state.data_export_display.iloc[:, :9]
|
536 |
+
|
537 |
+
# Flatten the DataFrame and count unique values
|
538 |
+
value_counts = player_columns.values.flatten().tolist()
|
539 |
+
value_counts = pd.Series(value_counts).value_counts()
|
540 |
+
|
541 |
+
percentages = (value_counts / lineup_num_var * 100).round(2)
|
542 |
+
|
543 |
+
# Create a DataFrame with the results
|
544 |
+
summary_df = pd.DataFrame({
|
545 |
+
'Player': value_counts.index,
|
546 |
+
'Salary': [salary_dict.get(player, player) for player in value_counts.index],
|
547 |
+
'Frequency': value_counts.values,
|
548 |
+
'Percentage': percentages.values
|
549 |
+
})
|
550 |
+
|
551 |
+
# Sort by frequency in descending order
|
552 |
+
summary_df = summary_df.sort_values('Frequency', ascending=False)
|
553 |
+
|
554 |
+
# Display the table
|
555 |
+
st.write("Player Frequency Table:")
|
556 |
+
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}, precision=2), height=500, use_container_width=True)
|
557 |
+
|
558 |
+
st.download_button(
|
559 |
+
label="Export player frequency",
|
560 |
+
data=convert_df_to_csv(summary_df),
|
561 |
+
file_name='NBA_player_frequency.csv',
|
562 |
+
mime='text/csv',
|
563 |
+
)
|
564 |
+
with tab2:
|
565 |
+
if 'working_seed' in st.session_state:
|
566 |
+
if site_var1 == 'Draftkings':
|
567 |
+
player_columns = st.session_state.working_seed[:, :8]
|
568 |
+
elif site_var1 == 'Fanduel':
|
569 |
+
player_columns = st.session_state.working_seed[:, :9]
|
570 |
+
|
571 |
+
# Flatten the DataFrame and count unique values
|
572 |
+
value_counts = player_columns.flatten().tolist()
|
573 |
+
value_counts = pd.Series(value_counts).value_counts()
|
574 |
+
|
575 |
+
percentages = (value_counts / len(st.session_state.working_seed) * 100).round(2)
|
576 |
+
# Create a DataFrame with the results
|
577 |
+
summary_df = pd.DataFrame({
|
578 |
+
'Player': value_counts.index,
|
579 |
+
'Salary': [salary_dict.get(player, player) for player in value_counts.index],
|
580 |
+
'Frequency': value_counts.values,
|
581 |
+
'Percentage': percentages.values
|
582 |
+
})
|
583 |
+
|
584 |
+
# Sort by frequency in descending order
|
585 |
+
summary_df = summary_df.sort_values('Frequency', ascending=False)
|
586 |
+
|
587 |
+
# Display the table
|
588 |
+
st.write("Seed Frame Frequency Table:")
|
589 |
+
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}, precision=2), height=500, use_container_width=True)
|
590 |
+
|
591 |
+
st.download_button(
|
592 |
+
label="Export seed frame frequency",
|
593 |
+
data=convert_df_to_csv(summary_df),
|
594 |
+
file_name='NBA_seed_frame_frequency.csv',
|
595 |
+
mime='text/csv',
|
596 |
+
)
|
app.yaml
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
runtime: python
|
2 |
+
env: flex
|
3 |
+
|
4 |
+
runtime_config:
|
5 |
+
python_version: 3
|
6 |
+
|
7 |
+
entrypoint: streamlit run streamlit-app.py --server.port $PORT
|
8 |
+
|
9 |
+
automatic_scaling:
|
10 |
+
max_num_instances: 2500
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
gspread
|
3 |
+
openpyxl
|
4 |
+
matplotlib
|
5 |
+
pymongo
|
6 |
+
pulp
|
7 |
+
docker
|
8 |
+
plotly
|
9 |
+
scipy
|