Spaces:
Sleeping
Sleeping
James McCool
commited on
Commit
·
c188e02
1
Parent(s):
a47ccc4
Add comprehensive NHL prop betting Streamlit application with data simulation and analysis
Browse files
app.py
ADDED
@@ -0,0 +1,433 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
st.set_page_config(layout="wide")
|
3 |
+
|
4 |
+
for name in dir():
|
5 |
+
if not name.startswith('_'):
|
6 |
+
del globals()[name]
|
7 |
+
|
8 |
+
import pulp
|
9 |
+
import numpy as np
|
10 |
+
from numpy import where as np_where
|
11 |
+
import pandas as pd
|
12 |
+
import streamlit as st
|
13 |
+
import pymongo
|
14 |
+
import scipy.stats as stats
|
15 |
+
|
16 |
+
@st.cache_resource
|
17 |
+
def init_conn():
|
18 |
+
uri = st.secrets['mongo_uri']
|
19 |
+
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
|
20 |
+
db = client["NHL_Database"]
|
21 |
+
|
22 |
+
return db
|
23 |
+
|
24 |
+
db = init_conn()
|
25 |
+
|
26 |
+
prop_table_options = ['NHL_GAME_PLAYER_SHOTS_ON_GOAL', 'NHL_GAME_PLAYER_POINTS', 'NHL_GAME_PLAYER_SHOTS_BLOCKED', 'NHL_GAME_PLAYER_ASSISTS']
|
27 |
+
prop_format = {'L5 Success': '{:.2%}', 'L10_Success': '{:.2%}', 'L20_success': '{:.2%}', 'Matchup Boost': '{:.2%}', 'Trending Over': '{:.2%}', 'Trending Under': '{:.2%}',
|
28 |
+
'Implied Over': '{:.2%}', 'Implied Under': '{:.2%}', 'Over Edge': '{:.2%}', 'Under Edge': '{:.2%}'}
|
29 |
+
all_sim_vars = ['NHL_GAME_PLAYER_SHOTS_ON_GOAL', 'NHL_GAME_PLAYER_POINTS', 'NHL_GAME_PLAYER_SHOTS_BLOCKED', 'NHL_GAME_PLAYER_ASSISTS']
|
30 |
+
pick6_sim_vars = ['Points', 'Shots on Goal', 'Assists', 'Blocks']
|
31 |
+
sim_all_hold = pd.DataFrame(columns=['Player', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge'])
|
32 |
+
|
33 |
+
@st.cache_resource(ttl=200)
|
34 |
+
def pull_baselines():
|
35 |
+
collection = db["Player_Level_ROO"]
|
36 |
+
cursor = collection.find()
|
37 |
+
raw_display = pd.DataFrame(cursor)
|
38 |
+
prop_display = raw_display[raw_display['Player'] != ""]
|
39 |
+
prop_display['Player Blocks'].replace("", np.nan, inplace=True)
|
40 |
+
prop_display['SOG Edge'].replace("", np.nan, inplace=True)
|
41 |
+
prop_display['Assist Edge'].replace("", np.nan, inplace=True)
|
42 |
+
prop_display['TP Edge'].replace("", np.nan, inplace=True)
|
43 |
+
prop_table = prop_display[['Player', 'Position', 'Team', 'Opp', 'Team_Total', 'Player SOG', 'Player Goals', 'Player Assists',
|
44 |
+
'Player TP', 'Player Blocks', 'Player Saves']]
|
45 |
+
prop_table['Player'].replace(['JJ Peterka', 'Alexander Killorn', 'Matt Boldy', 'Nick Paul', 'Alex Kerfoot'],
|
46 |
+
['John-Jason Peterka', 'Alex Killorn', 'Matthew Boldy', 'Nicholas Paul', 'Alexander Kerfoot'], inplace=True)
|
47 |
+
prop_table['Player'] = prop_table['Player'].str.strip()
|
48 |
+
|
49 |
+
stat_columns = ['Team_Total', 'Player SOG', 'Player Goals', 'Player Assists', 'Player TP', 'Player Blocks', 'Player Saves']
|
50 |
+
for stat in stat_columns:
|
51 |
+
prop_table[stat] = prop_table[stat].astype(float)
|
52 |
+
|
53 |
+
collection = db["prop_trends"]
|
54 |
+
cursor = collection.find()
|
55 |
+
raw_display = pd.DataFrame(cursor)
|
56 |
+
raw_display.replace('', np.nan, inplace=True)
|
57 |
+
prop_trends = raw_display.dropna(subset='Player')
|
58 |
+
prop_trends['Player'].replace(['JJ Peterka', 'Alexander Killorn', 'Matt Boldy', 'Nick Paul', 'Alex Kerfoot'],
|
59 |
+
['John-Jason Peterka', 'Alex Killorn', 'Matthew Boldy', 'Nicholas Paul', 'Alexander Kerfoot'], inplace=True)
|
60 |
+
|
61 |
+
collection = db["Pick6_ingest"]
|
62 |
+
cursor = collection.find()
|
63 |
+
raw_display = pd.DataFrame(cursor)
|
64 |
+
raw_display.replace('', np.nan, inplace=True)
|
65 |
+
pick_frame = raw_display.dropna(subset='Player')
|
66 |
+
pick_frame['Player'].replace(['JJ Peterka', 'Alexander Killorn', 'Matt Boldy', 'Nick Paul', 'Alex Kerfoot'],
|
67 |
+
['John-Jason Peterka', 'Alex Killorn', 'Matthew Boldy', 'Nicholas Paul', 'Alexander Kerfoot'], inplace=True)
|
68 |
+
|
69 |
+
team_dict = dict(zip(prop_table['Player'], prop_table['Team']))
|
70 |
+
|
71 |
+
return prop_table, prop_trends, pick_frame, team_dict
|
72 |
+
|
73 |
+
def calculate_poisson(row):
|
74 |
+
mean_val = row['Mean_Outcome']
|
75 |
+
threshold = row['Prop']
|
76 |
+
cdf_value = stats.poisson.cdf(threshold, mean_val)
|
77 |
+
probability = 1 - cdf_value
|
78 |
+
return probability
|
79 |
+
|
80 |
+
def convert_df_to_csv(df):
|
81 |
+
return df.to_csv().encode('utf-8')
|
82 |
+
|
83 |
+
prop_display, prop_trends, pick_frame, team_dict = pull_baselines()
|
84 |
+
|
85 |
+
tab1, tab2, tab3 = st.tabs(["Player Stat Table", 'Prop Trend Table', 'Stat Specific Simulations'])
|
86 |
+
|
87 |
+
with tab1:
|
88 |
+
if st.button("Reset Data", key='reset1'):
|
89 |
+
st.cache_data.clear()
|
90 |
+
prop_display, prop_trends, pick_frame, team_dict = pull_baselines()
|
91 |
+
prop_frame = prop_display
|
92 |
+
st.dataframe(prop_frame.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
93 |
+
|
94 |
+
st.download_button(
|
95 |
+
label="Export Table",
|
96 |
+
data=convert_df_to_csv(prop_frame),
|
97 |
+
file_name='NHL_prop_stat_export.csv',
|
98 |
+
mime='text/csv',
|
99 |
+
key='prop_export',
|
100 |
+
)
|
101 |
+
|
102 |
+
with tab2:
|
103 |
+
if st.button("Reset Data", key='reset3'):
|
104 |
+
st.cache_data.clear()
|
105 |
+
prop_display, prop_trends, pick_frame, team_dict = pull_baselines()
|
106 |
+
split_var5 = st.radio("Would you like to view all teams or specific ones?", ('All', 'Specific Teams'), key='split_var5')
|
107 |
+
if split_var5 == 'Specific Teams':
|
108 |
+
team_var5 = st.multiselect('Which teams would you like to include in the tables?', options = prop_trends['Team'].unique(), key='team_var5')
|
109 |
+
elif split_var5 == 'All':
|
110 |
+
team_var5 = prop_trends.Team.values.tolist()
|
111 |
+
book_split5 = st.radio("Would you like to view all books or specific ones?", ('All', 'Specific Books'), key='book_split5')
|
112 |
+
if book_split5 == 'Specific Books':
|
113 |
+
book_var5 = st.multiselect('Which books would you like to include in the tables?', options = ['BET_365', 'DRAFTKINGS', 'CONSENSUS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL'], key='book_var5')
|
114 |
+
elif book_split5 == 'All':
|
115 |
+
book_var5 = ['BET_365', 'DRAFTKINGS', 'CONSENSUS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL']
|
116 |
+
prop_type_var2 = st.selectbox('Select type of prop are you wanting to view', options = prop_table_options)
|
117 |
+
prop_frame_disp = prop_trends[prop_trends['Team'].isin(team_var5)]
|
118 |
+
prop_frame_disp = prop_frame_disp[prop_frame_disp['book'].isin(book_var5)]
|
119 |
+
prop_frame_disp = prop_frame_disp[prop_frame_disp['prop_type'] == prop_type_var2]
|
120 |
+
prop_frame_disp = prop_frame_disp.sort_values(by='Trending Over', ascending=False)
|
121 |
+
st.dataframe(prop_frame_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(prop_format, precision=2), use_container_width = True)
|
122 |
+
st.download_button(
|
123 |
+
label="Export Prop Trends Model",
|
124 |
+
data=convert_df_to_csv(prop_frame_disp),
|
125 |
+
file_name='NHL_prop_trends_export.csv',
|
126 |
+
mime='text/csv',
|
127 |
+
)
|
128 |
+
|
129 |
+
with tab3:
|
130 |
+
st.info('The Over and Under percentages are a composite percentage based on simulations, historical performance, and implied probabilities, and may be different than you would expect based purely on the median projection. Likewise, the Edge of a bet is not the only indicator of if you should make the bet or not as the suggestion is using a base acceptable threshold to determine how much edge you should have for each stat category.')
|
131 |
+
if st.button("Reset Data/Load Data", key='reset5'):
|
132 |
+
st.cache_data.clear()
|
133 |
+
prop_display, prop_trends, pick_frame, team_dict = pull_baselines()
|
134 |
+
|
135 |
+
settings_container = st.container()
|
136 |
+
df_hold_container = st.empty()
|
137 |
+
export_container = st.empty()
|
138 |
+
|
139 |
+
with settings_container.container():
|
140 |
+
col1, col2, col3, col4 = st.columns([3, 3, 3, 3])
|
141 |
+
with col1:
|
142 |
+
game_select_var = st.selectbox('Select prop source', options = ['Aggregate', 'Pick6'])
|
143 |
+
with col2:
|
144 |
+
book_select_var = st.selectbox('Select book', options = ['ALL', 'BET_365', 'DRAFTKINGS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL'])
|
145 |
+
if book_select_var == 'ALL':
|
146 |
+
book_selections = ['BET_365', 'DRAFTKINGS', 'FANDUEL', 'MGM', 'UNIBET', 'WILLIAM_HILL']
|
147 |
+
else:
|
148 |
+
book_selections = [book_select_var]
|
149 |
+
if game_select_var == 'Aggregate':
|
150 |
+
prop_df = prop_trends[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
|
151 |
+
elif game_select_var == 'Pick6':
|
152 |
+
prop_df = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
|
153 |
+
book_selections = ['Pick6']
|
154 |
+
with col3:
|
155 |
+
if game_select_var == 'Aggregate':
|
156 |
+
prop_type_var = st.selectbox('Select prop category', options = ['All Props', 'NHL_GAME_PLAYER_POINTS', 'NHL_GAME_PLAYER_SHOTS_ON_GOAL', 'NHL_GAME_PLAYER_ASSISTS', 'NHL_GAME_PLAYER_SHOTS_BLOCKED'])
|
157 |
+
elif game_select_var == 'Pick6':
|
158 |
+
prop_type_var = st.selectbox('Select prop category', options = ['All Props', 'Points', 'Shots on Goal', 'Assists', 'Blocks'])
|
159 |
+
with col4:
|
160 |
+
st.download_button(
|
161 |
+
label="Download Prop Source",
|
162 |
+
data=convert_df_to_csv(prop_df),
|
163 |
+
file_name='NHL_prop_source.csv',
|
164 |
+
mime='text/csv',
|
165 |
+
key='prop_source',
|
166 |
+
)
|
167 |
+
|
168 |
+
if st.button('Simulate Prop Category'):
|
169 |
+
with df_hold_container.container():
|
170 |
+
if prop_type_var == 'All Props':
|
171 |
+
|
172 |
+
if game_select_var == 'Aggregate':
|
173 |
+
prop_df_raw = prop_trends[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
|
174 |
+
sim_vars = ['NHL_GAME_PLAYER_POINTS', 'NHL_GAME_PLAYER_SHOTS_ON_GOAL', 'NHL_GAME_PLAYER_ASSISTS', 'NHL_GAME_PLAYER_SHOTS_BLOCKED']
|
175 |
+
elif game_select_var == 'Pick6':
|
176 |
+
prop_df_raw = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
|
177 |
+
sim_vars = ['Points', 'Shots on Goal', 'Assists', 'Blocks']
|
178 |
+
|
179 |
+
player_df = prop_display.copy()
|
180 |
+
|
181 |
+
for prop in sim_vars:
|
182 |
+
|
183 |
+
for books in book_selections:
|
184 |
+
prop_df = prop_df_raw[prop_df_raw['prop_type'] == prop]
|
185 |
+
prop_df = prop_df[prop_df['book'] == books]
|
186 |
+
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
|
187 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
188 |
+
prop_df['Over'] = 1 / prop_df['over_line']
|
189 |
+
prop_df['Under'] = 1 / prop_df['under_line']
|
190 |
+
|
191 |
+
prop_dict = dict(zip(prop_df.Player, prop_df.Prop))
|
192 |
+
prop_type_dict = dict(zip(prop_df.Player, prop_df.prop_type))
|
193 |
+
book_dict = dict(zip(prop_df.Player, prop_df.book))
|
194 |
+
over_dict = dict(zip(prop_df.Player, prop_df.Over))
|
195 |
+
under_dict = dict(zip(prop_df.Player, prop_df.Under))
|
196 |
+
trending_over_dict = dict(zip(prop_df.Player, prop_df['Trending Over']))
|
197 |
+
trending_under_dict = dict(zip(prop_df.Player, prop_df['Trending Under']))
|
198 |
+
|
199 |
+
player_df['book'] = player_df['Player'].map(book_dict)
|
200 |
+
player_df['Prop'] = player_df['Player'].map(prop_dict)
|
201 |
+
player_df['prop_type'] = player_df['Player'].map(prop_type_dict)
|
202 |
+
player_df['Trending Over'] = player_df['Player'].map(trending_over_dict)
|
203 |
+
player_df['Trending Under'] = player_df['Player'].map(trending_under_dict)
|
204 |
+
|
205 |
+
df = player_df.reset_index(drop=True)
|
206 |
+
|
207 |
+
team_dict = dict(zip(df.Player, df.Team))
|
208 |
+
|
209 |
+
total_sims = 1000
|
210 |
+
|
211 |
+
df.replace("", 0, inplace=True)
|
212 |
+
|
213 |
+
if prop == 'NHL_GAME_PLAYER_POINTS' or prop == 'Points':
|
214 |
+
df['Median'] = df['Player TP']
|
215 |
+
elif prop == 'NHL_GAME_PLAYER_SHOTS_ON_GOAL' or prop == 'Shots on Goal':
|
216 |
+
df['Median'] = df['Player SOG']
|
217 |
+
elif prop == 'NHL_GAME_PLAYER_ASSISTS' or prop == 'Assists':
|
218 |
+
df['Median'] = df['Player Assists']
|
219 |
+
elif prop == 'NHL_GAME_PLAYER_SHOTS_BLOCKED' or prop == 'Blocks':
|
220 |
+
df['Median'] = df['Player Blocks']
|
221 |
+
|
222 |
+
flex_file = df.copy()
|
223 |
+
flex_file['Floor'] = (flex_file['Median'] * .15)
|
224 |
+
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1)
|
225 |
+
flex_file['STD'] = (flex_file['Median']/3)
|
226 |
+
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
227 |
+
flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|
228 |
+
|
229 |
+
hold_file = flex_file.copy()
|
230 |
+
overall_file = flex_file.copy()
|
231 |
+
prop_file = flex_file.copy()
|
232 |
+
|
233 |
+
overall_players = overall_file[['Player']]
|
234 |
+
|
235 |
+
for x in range(0,total_sims):
|
236 |
+
prop_file[x] = prop_file['Prop']
|
237 |
+
|
238 |
+
prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
239 |
+
|
240 |
+
for x in range(0,total_sims):
|
241 |
+
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
242 |
+
|
243 |
+
overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
244 |
+
|
245 |
+
players_only = hold_file[['Player']]
|
246 |
+
|
247 |
+
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
|
248 |
+
|
249 |
+
prop_check = (overall_file - prop_file)
|
250 |
+
|
251 |
+
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
|
252 |
+
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
253 |
+
players_only['Book'] = players_only['Player'].map(book_dict)
|
254 |
+
players_only['Trending Over'] = players_only['Player'].map(trending_over_dict)
|
255 |
+
players_only['Trending Under'] = players_only['Player'].map(trending_under_dict)
|
256 |
+
players_only['over_adj'] = np_where((players_only['Mean_Outcome'] - players_only['Prop']) > 0, 1, (players_only['Mean_Outcome'] / players_only['Prop']))
|
257 |
+
players_only['under_adj'] = np_where((players_only['Prop'] - players_only['Mean_Outcome']) > 0, 1, (players_only['Prop'] / players_only['Mean_Outcome']))
|
258 |
+
players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
|
259 |
+
players_only['10%'] = overall_file.quantile(0.1, axis=1)
|
260 |
+
players_only['90%'] = overall_file.quantile(0.9, axis=1)
|
261 |
+
players_only['Over'] = np_where(players_only['Prop'] <= 3, players_only['poisson_var'], prop_check[prop_check > 0].count(axis=1)/float(total_sims))
|
262 |
+
players_only['Imp Over'] = players_only['Player'].map(over_dict)
|
263 |
+
players_only['Over%'] = (players_only['Over'] * 0.4) + (players_only['Trending Over'] * 0.4) + (players_only['Imp Over'] * 0.2)
|
264 |
+
players_only['Under'] = np_where(players_only['Prop'] <= 3, 1 - players_only['poisson_var'], prop_check[prop_check < 0].count(axis=1)/float(total_sims))
|
265 |
+
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
266 |
+
players_only['Under%'] = (players_only['Under'] * 0.4) + (players_only['Trending Under'] * 0.4) + (players_only['Imp Under'] * 0.2)
|
267 |
+
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
268 |
+
players_only['prop_threshold'] = .10
|
269 |
+
players_only = players_only[players_only['Mean_Outcome'] > 0]
|
270 |
+
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
|
271 |
+
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
|
272 |
+
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] * players_only['over_adj'], players_only['Under_diff'] * players_only['under_adj'])
|
273 |
+
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
|
274 |
+
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
|
275 |
+
players_only['Edge'] = players_only['Bet_check']
|
276 |
+
players_only['Prop Type'] = prop
|
277 |
+
|
278 |
+
players_only['Player'] = hold_file[['Player']]
|
279 |
+
players_only['Team'] = players_only['Player'].map(team_dict)
|
280 |
+
|
281 |
+
leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop Type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge']]
|
282 |
+
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
283 |
+
|
284 |
+
final_outcomes = sim_all_hold
|
285 |
+
st.write(f'finished {prop} for {books}')
|
286 |
+
|
287 |
+
elif prop_type_var != 'All Props':
|
288 |
+
|
289 |
+
player_df = prop_display.copy()
|
290 |
+
|
291 |
+
if game_select_var == 'Aggregate':
|
292 |
+
prop_df_raw = prop_trends[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
|
293 |
+
elif game_select_var == 'Pick6':
|
294 |
+
prop_df_raw = pick_frame[['Player', 'book', 'over_prop', 'over_line', 'under_line', 'prop_type', 'Trending Over', 'Trending Under']]
|
295 |
+
|
296 |
+
for books in book_selections:
|
297 |
+
prop_df = prop_df_raw[prop_df_raw['book'] == books]
|
298 |
+
|
299 |
+
if prop_type_var == "NHL_GAME_PLAYER_SHOTS_ON_GOAL":
|
300 |
+
prop_df = prop_df[prop_df['prop_type'] == 'NHL_GAME_PLAYER_SHOTS_ON_GOAL']
|
301 |
+
elif prop_type_var == 'Shots on Goal':
|
302 |
+
prop_df = prop_df[prop_df['prop_type'] == 'Player SOG']
|
303 |
+
elif prop_type_var == "NHL_GAME_PLAYER_POINTS":
|
304 |
+
prop_df = prop_df[prop_df['prop_type'] == 'NHL_GAME_PLAYER_POINTS']
|
305 |
+
elif prop_type_var == "Points":
|
306 |
+
prop_df = prop_df[prop_df['prop_type'] == 'Player TP']
|
307 |
+
elif prop_type_var == "NHL_GAME_PLAYER_ASSISTS":
|
308 |
+
prop_df = prop_df[prop_df['prop_type'] == 'NHL_GAME_PLAYER_ASSISTS']
|
309 |
+
elif prop_type_var == "Assists":
|
310 |
+
prop_df = prop_df[prop_df['prop_type'] == 'Player Assists']
|
311 |
+
elif prop_type_var == "NHL_GAME_PLAYER_SHOTS_BLOCKED":
|
312 |
+
prop_df = prop_df[prop_df['prop_type'] == 'NHL_GAME_PLAYER_SHOTS_BLOCKED']
|
313 |
+
elif prop_type_var == "Blocks":
|
314 |
+
prop_df = prop_df[prop_df['prop_type'] == 'Player Blocks']
|
315 |
+
|
316 |
+
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
317 |
+
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
318 |
+
prop_df['Over'] = 1 / prop_df['over_line']
|
319 |
+
prop_df['Under'] = 1 / prop_df['under_line']
|
320 |
+
|
321 |
+
prop_dict = dict(zip(prop_df.Player, prop_df.Prop))
|
322 |
+
prop_type_dict = dict(zip(prop_df.Player, prop_df.prop_type))
|
323 |
+
book_dict = dict(zip(prop_df.Player, prop_df.book))
|
324 |
+
over_dict = dict(zip(prop_df.Player, prop_df.Over))
|
325 |
+
under_dict = dict(zip(prop_df.Player, prop_df.Under))
|
326 |
+
trending_over_dict = dict(zip(prop_df.Player, prop_df['Trending Over']))
|
327 |
+
trending_under_dict = dict(zip(prop_df.Player, prop_df['Trending Under']))
|
328 |
+
|
329 |
+
player_df['book'] = player_df['Player'].map(book_dict)
|
330 |
+
player_df['Prop'] = player_df['Player'].map(prop_dict)
|
331 |
+
player_df['prop_type'] = player_df['Player'].map(prop_type_dict)
|
332 |
+
player_df['Trending Over'] = player_df['Player'].map(trending_over_dict)
|
333 |
+
player_df['Trending Under'] = player_df['Player'].map(trending_under_dict)
|
334 |
+
|
335 |
+
df = player_df.reset_index(drop=True)
|
336 |
+
|
337 |
+
team_dict = dict(zip(df.Player, df.Team))
|
338 |
+
|
339 |
+
total_sims = 1000
|
340 |
+
|
341 |
+
df.replace("", 0, inplace=True)
|
342 |
+
|
343 |
+
if prop_type_var == 'NHL_GAME_PLAYER_POINTS' or prop_type_var == 'Points':
|
344 |
+
df['Median'] = df['Player TP']
|
345 |
+
elif prop_type_var == 'NHL_GAME_PLAYER_SHOTS_ON_GOAL' or prop_type_var == 'Shots on Goal':
|
346 |
+
df['Median'] = df['Player SOG']
|
347 |
+
elif prop_type_var == 'NHL_GAME_PLAYER_ASSISTS' or prop_type_var == 'Assists':
|
348 |
+
df['Median'] = df['Player Assists']
|
349 |
+
elif prop_type_var == 'NHL_GAME_PLAYER_SHOTS_BLOCKED' or prop_type_var == 'Blocks':
|
350 |
+
df['Median'] = df['Player Blocks']
|
351 |
+
|
352 |
+
flex_file = df.copy()
|
353 |
+
flex_file['Floor'] = (flex_file['Median'] * .15)
|
354 |
+
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1)
|
355 |
+
flex_file['STD'] = (flex_file['Median']/3)
|
356 |
+
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
357 |
+
flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|
358 |
+
|
359 |
+
hold_file = flex_file.copy()
|
360 |
+
overall_file = flex_file.copy()
|
361 |
+
prop_file = flex_file.copy()
|
362 |
+
|
363 |
+
overall_players = overall_file[['Player']]
|
364 |
+
|
365 |
+
for x in range(0,total_sims):
|
366 |
+
prop_file[x] = prop_file['Prop']
|
367 |
+
|
368 |
+
prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
369 |
+
|
370 |
+
for x in range(0,total_sims):
|
371 |
+
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
372 |
+
|
373 |
+
overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
374 |
+
|
375 |
+
players_only = hold_file[['Player']]
|
376 |
+
|
377 |
+
player_outcomes = pd.merge(players_only, overall_file, left_index=True, right_index=True)
|
378 |
+
|
379 |
+
prop_check = (overall_file - prop_file)
|
380 |
+
|
381 |
+
players_only['Mean_Outcome'] = overall_file.mean(axis=1)
|
382 |
+
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
383 |
+
players_only['Book'] = players_only['Player'].map(book_dict)
|
384 |
+
players_only['Trending Over'] = players_only['Player'].map(trending_over_dict)
|
385 |
+
players_only['Trending Under'] = players_only['Player'].map(trending_under_dict)
|
386 |
+
players_only['over_adj'] = np_where((players_only['Mean_Outcome'] - players_only['Prop']) > 0, 1, (players_only['Mean_Outcome'] / players_only['Prop']))
|
387 |
+
players_only['under_adj'] = np_where((players_only['Prop'] - players_only['Mean_Outcome']) > 0, 1, (players_only['Prop'] / players_only['Mean_Outcome']))
|
388 |
+
players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
|
389 |
+
players_only['10%'] = overall_file.quantile(0.1, axis=1)
|
390 |
+
players_only['90%'] = overall_file.quantile(0.9, axis=1)
|
391 |
+
players_only['Over'] = np_where(players_only['Prop'] <= 3, players_only['poisson_var'], prop_check[prop_check > 0].count(axis=1)/float(total_sims))
|
392 |
+
players_only['Imp Over'] = players_only['Player'].map(over_dict)
|
393 |
+
players_only['Over%'] = (players_only['Over'] * 0.4) + (players_only['Trending Over'] * 0.4) + (players_only['Imp Over'] * 0.2)
|
394 |
+
players_only['Under'] = np_where(players_only['Prop'] <= 3, 1 - players_only['poisson_var'], prop_check[prop_check < 0].count(axis=1)/float(total_sims))
|
395 |
+
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
396 |
+
players_only['Under%'] = (players_only['Under'] * 0.4) + (players_only['Trending Under'] * 0.4) + (players_only['Imp Under'] * 0.2)
|
397 |
+
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
398 |
+
players_only['prop_threshold'] = .10
|
399 |
+
players_only = players_only[players_only['Mean_Outcome'] > 0]
|
400 |
+
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
|
401 |
+
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
|
402 |
+
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] * players_only['over_adj'], players_only['Under_diff'] * players_only['under_adj'])
|
403 |
+
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
|
404 |
+
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
|
405 |
+
players_only['Edge'] = players_only['Bet_check']
|
406 |
+
players_only['Prop Type'] = prop_type_var
|
407 |
+
|
408 |
+
players_only['Player'] = hold_file[['Player']]
|
409 |
+
players_only['Team'] = players_only['Player'].map(team_dict)
|
410 |
+
|
411 |
+
leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop', 'Prop Type', 'Mean_Outcome', 'Imp Over', 'Trending Over', 'Over%', 'Imp Under', 'Trending Under', 'Under%', 'Bet?', 'Edge']]
|
412 |
+
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
413 |
+
|
414 |
+
final_outcomes = sim_all_hold
|
415 |
+
st.write(f'finished {prop_type_var} for {books}')
|
416 |
+
|
417 |
+
final_outcomes = final_outcomes[final_outcomes['Prop'] > 0]
|
418 |
+
if game_select_var == 'Pick6':
|
419 |
+
final_outcomes = final_outcomes.drop_duplicates(subset=['Player', 'Prop Type'])
|
420 |
+
final_outcomes = final_outcomes.sort_values(by='Edge', ascending=False)
|
421 |
+
|
422 |
+
with df_hold_container:
|
423 |
+
df_hold_container = st.empty()
|
424 |
+
st.dataframe(final_outcomes.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
425 |
+
with export_container:
|
426 |
+
export_container = st.empty()
|
427 |
+
st.download_button(
|
428 |
+
label="Export Projections",
|
429 |
+
data=convert_df_to_csv(final_outcomes),
|
430 |
+
file_name='NHL_prop_proj.csv',
|
431 |
+
mime='text/csv',
|
432 |
+
key='prop_proj',
|
433 |
+
)
|