James McCool commited on
Commit
55ce9cc
·
1 Parent(s): 221e99a

Add Streamlit NHL DFS simulation app with MongoDB integration

Browse files
Files changed (3) hide show
  1. app.py +700 -0
  2. app.yaml +10 -0
  3. requirements.txt +10 -0
app.py ADDED
@@ -0,0 +1,700 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ st.set_page_config(layout="wide")
3
+ import numpy as np
4
+ import pandas as pd
5
+ import pymongo
6
+
7
+ @st.cache_resource
8
+ def init_conn():
9
+
10
+ uri = st.secrets['mongo_uri']
11
+ client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
12
+ db = client["NHL_Database"]
13
+
14
+ return db
15
+
16
+ db = init_conn()
17
+
18
+ percentages_format = {'Exposure': '{:.2%}'}
19
+ freq_format = {'Exposure': '{:.2%}', 'Proj Own': '{:.2%}', 'Edge': '{:.2%}'}
20
+ dk_columns = ['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
21
+ fd_columns = ['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
22
+
23
+ @st.cache_data(ttl = 600)
24
+ def init_DK_seed_frames(sharp_split):
25
+
26
+ collection = db["DK_NHL_seed_frame"]
27
+ cursor = collection.find().limit(sharp_split)
28
+
29
+ raw_display = pd.DataFrame(list(cursor))
30
+ raw_display = raw_display[['C1', 'C2', 'W1', 'W2', 'W3', 'D1', 'D2', 'G', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
31
+ DK_seed = raw_display.to_numpy()
32
+
33
+ return DK_seed
34
+
35
+ @st.cache_data(ttl = 599)
36
+ def init_FD_seed_frames(sharp_split):
37
+
38
+ collection = db["FD_NHL_seed_frame"]
39
+ cursor = collection.find().limit(sharp_split)
40
+
41
+ raw_display = pd.DataFrame(list(cursor))
42
+ raw_display = raw_display[['C1', 'C2', 'W1', 'W2', 'D1', 'D2', 'FLEX1', 'FLEX2', 'G', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
43
+ FD_seed = raw_display.to_numpy()
44
+
45
+ return FD_seed
46
+
47
+ @st.cache_data(ttl = 599)
48
+ def init_baselines():
49
+ collection = db["Player_Level_ROO"]
50
+ cursor = collection.find()
51
+
52
+ raw_display = pd.DataFrame(list(cursor))
53
+ load_display = raw_display[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own',
54
+ 'Small Field Own%', 'Large Field Own%', 'Cash Own%', 'CPT_Own', 'Site', 'Type', 'Slate', 'player_id', 'timestamp']]
55
+ load_display['STDev'] = load_display['Median'] / 3
56
+ DK_load_display = load_display[load_display['Site'] == 'Draftkings']
57
+ DK_load_display = DK_load_display.drop_duplicates(subset=['Player'], keep='first')
58
+
59
+ dk_raw = DK_load_display.dropna(subset=['Median'])
60
+ dk_raw['Team'] = dk_raw['Team'].replace(['TB', 'SJ', 'LA'], ['TBL', 'SJS', 'LAK'])
61
+
62
+ FD_load_display = load_display[load_display['Site'] == 'Fanduel']
63
+ FD_load_display = FD_load_display.drop_duplicates(subset=['Player'], keep='first')
64
+
65
+ fd_raw = FD_load_display.dropna(subset=['Median'])
66
+ fd_raw['Team'] = fd_raw['Team'].replace(['TB', 'SJ', 'LA'], ['TBL', 'SJS', 'LAK'])
67
+
68
+ teams_playing_count = len(dk_raw.Team.unique())
69
+
70
+ return dk_raw, fd_raw, teams_playing_count
71
+
72
+ @st.cache_data
73
+ def convert_df(array):
74
+ array = pd.DataFrame(array, columns=column_names)
75
+ return array.to_csv().encode('utf-8')
76
+
77
+ @st.cache_data
78
+ def calculate_DK_value_frequencies(np_array):
79
+ unique, counts = np.unique(np_array[:, :9], return_counts=True)
80
+ frequencies = counts / len(np_array) # Normalize by the number of rows
81
+ combined_array = np.column_stack((unique, frequencies))
82
+ return combined_array
83
+
84
+ @st.cache_data
85
+ def calculate_FD_value_frequencies(np_array):
86
+ unique, counts = np.unique(np_array[:, :9], return_counts=True)
87
+ frequencies = counts / len(np_array) # Normalize by the number of rows
88
+ combined_array = np.column_stack((unique, frequencies))
89
+ return combined_array
90
+
91
+ @st.cache_data
92
+ def sim_contest(Sim_size, seed_frame, maps_dict, Contest_Size, teams_playing_count):
93
+ SimVar = 1
94
+ Sim_Winners = []
95
+ fp_array = seed_frame.copy()
96
+ # Pre-vectorize functions
97
+ vec_projection_map = np.vectorize(maps_dict['Projection_map'].__getitem__)
98
+ vec_stdev_map = np.vectorize(maps_dict['STDev_map'].__getitem__)
99
+
100
+ st.write('Simulating contest on frames')
101
+
102
+ while SimVar <= Sim_size:
103
+ fp_random = fp_array[np.random.choice(fp_array.shape[0], Contest_Size)]
104
+
105
+ # Calculate stack multipliers first
106
+ stack_multiplier = np.ones(fp_random.shape[0]) # Start with no bonus
107
+ stack_multiplier += np.minimum(0.10, np.where(fp_random[:, 12] == 4, 0.025 * (teams_playing_count - 8), 0))
108
+ stack_multiplier += np.minimum(0.15, np.where(fp_random[:, 12] >= 5, 0.025 * (teams_playing_count - 12), 0))
109
+
110
+ # Apply multipliers to both loc and scale in the normal distribution
111
+ base_projections = np.sum(np.random.normal(
112
+ loc=vec_projection_map(fp_random[:, :-7]) * stack_multiplier[:, np.newaxis],
113
+ scale=vec_stdev_map(fp_random[:, :-7]) * stack_multiplier[:, np.newaxis]),
114
+ axis=1)
115
+
116
+ final_projections = base_projections
117
+
118
+ sample_arrays = np.c_[fp_random, final_projections]
119
+
120
+ final_array = sample_arrays[sample_arrays[:, 10].argsort()[::-1]]
121
+ best_lineup = final_array[final_array[:, -1].argsort(kind='stable')[::-1][:1]]
122
+ Sim_Winners.append(best_lineup)
123
+ SimVar += 1
124
+
125
+ return Sim_Winners
126
+
127
+ dk_raw, fd_raw, teams_playing_count = init_baselines()
128
+ dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
129
+ fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
130
+
131
+ tab1, tab2 = st.tabs(['Contest Sims', 'Data Export'])
132
+ with tab2:
133
+ col1, col2 = st.columns([1, 7])
134
+ with col1:
135
+ if st.button("Load/Reset Data", key='reset1'):
136
+ st.cache_data.clear()
137
+ for key in st.session_state.keys():
138
+ del st.session_state[key]
139
+ DK_seed = init_DK_seed_frames(10000)
140
+ FD_seed = init_FD_seed_frames(10000)
141
+ dk_raw, fd_raw, teams_playing_count = init_baselines()
142
+ dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
143
+ fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
144
+
145
+ slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'))
146
+ site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
147
+ sharp_split_var = st.number_input("How many lineups do you want?", value=10000, max_value=500000, min_value=10000, step=10000)
148
+
149
+ if site_var1 == 'Draftkings':
150
+
151
+ team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
152
+ if team_var1 == 'Specific Teams':
153
+ team_var2 = st.multiselect('Which teams do you want?', options = dk_raw['Team'].unique())
154
+ elif team_var1 == 'Full Slate':
155
+ team_var2 = dk_raw.Team.values.tolist()
156
+
157
+ stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
158
+ if stack_var1 == 'Specific Stack Sizes':
159
+ stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
160
+ elif stack_var1 == 'Full Slate':
161
+ stack_var2 = [5, 4, 3, 2, 1, 0]
162
+
163
+ elif site_var1 == 'Fanduel':
164
+
165
+ team_var1 = st.radio("Do you want a frame with specific teams?", ('Full Slate', 'Specific Teams'), key='team_var1')
166
+ if team_var1 == 'Specific Teams':
167
+ team_var2 = st.multiselect('Which teams do you want?', options = fd_raw['Team'].unique())
168
+ elif team_var1 == 'Full Slate':
169
+ team_var2 = fd_raw.Team.values.tolist()
170
+
171
+ stack_var1 = st.radio("Do you want a frame with specific stack sizes?", ('Full Slate', 'Specific Stack Sizes'), key='stack_var1')
172
+ if stack_var1 == 'Specific Stack Sizes':
173
+ stack_var2 = st.multiselect('Which stack sizes do you want?', options = [5, 4, 3, 2, 1, 0])
174
+ elif stack_var1 == 'Full Slate':
175
+ stack_var2 = [5, 4, 3, 2, 1, 0]
176
+
177
+
178
+ if st.button("Prepare data export", key='data_export'):
179
+ if 'working_seed' in st.session_state:
180
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
181
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
182
+ elif 'working_seed' not in st.session_state:
183
+ if site_var1 == 'Draftkings':
184
+ if slate_var1 == 'Main Slate':
185
+ st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
186
+
187
+ raw_baselines = dk_raw
188
+ column_names = dk_columns
189
+
190
+ elif site_var1 == 'Fanduel':
191
+ if slate_var1 == 'Main Slate':
192
+ st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
193
+
194
+ raw_baselines = fd_raw
195
+ column_names = fd_columns
196
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
197
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
198
+ data_export = st.session_state.working_seed.copy()
199
+ st.download_button(
200
+ label="Export optimals set",
201
+ data=convert_df(data_export),
202
+ file_name='NHL_optimals_export.csv',
203
+ mime='text/csv',
204
+ )
205
+ for key in st.session_state.keys():
206
+ del st.session_state[key]
207
+
208
+ with col2:
209
+ if st.button("Load Data", key='load_data'):
210
+ if site_var1 == 'Draftkings':
211
+ if 'working_seed' in st.session_state:
212
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
213
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
214
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
215
+ elif 'working_seed' not in st.session_state:
216
+ if slate_var1 == 'Main Slate':
217
+ st.session_state.working_seed = init_DK_seed_frames(sharp_split_var)
218
+
219
+ raw_baselines = dk_raw
220
+ column_names = dk_columns
221
+
222
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
223
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
224
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
225
+
226
+ elif site_var1 == 'Fanduel':
227
+ if 'working_seed' in st.session_state:
228
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
229
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
230
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
231
+ elif 'working_seed' not in st.session_state:
232
+ if slate_var1 == 'Main Slate':
233
+ st.session_state.working_seed = init_FD_seed_frames(sharp_split_var)
234
+
235
+ raw_baselines = fd_raw
236
+ column_names = fd_columns
237
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 11], team_var2)]
238
+ st.session_state.working_seed = st.session_state.working_seed[np.isin(st.session_state.working_seed[:, 12], stack_var2)]
239
+ st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:1000], columns=column_names)
240
+
241
+ with st.container():
242
+ if 'data_export_display' in st.session_state:
243
+ st.dataframe(st.session_state.data_export_display.style.format(freq_format, precision=2), use_container_width = True)
244
+
245
+ with tab1:
246
+ col1, col2 = st.columns([1, 7])
247
+ with col1:
248
+ if st.button("Load/Reset Data", key='reset2'):
249
+ st.cache_data.clear()
250
+ for key in st.session_state.keys():
251
+ del st.session_state[key]
252
+ DK_seed = init_DK_seed_frames(10000)
253
+ FD_seed = init_FD_seed_frames(10000)
254
+ dk_raw, fd_raw, teams_playing_count = init_baselines()
255
+ dk_id_dict = dict(zip(dk_raw.Player, dk_raw.player_id))
256
+ fd_id_dict = dict(zip(fd_raw.Player, fd_raw.player_id))
257
+
258
+ sim_slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Other Main Slate'), key='sim_slate_var1')
259
+ sim_site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='sim_site_var1')
260
+
261
+ contest_var1 = st.selectbox("What contest size are you simulating?", ('Small', 'Medium', 'Large', 'Custom'))
262
+ if contest_var1 == 'Small':
263
+ Contest_Size = 1000
264
+ elif contest_var1 == 'Medium':
265
+ Contest_Size = 5000
266
+ elif contest_var1 == 'Large':
267
+ Contest_Size = 10000
268
+ elif contest_var1 == 'Custom':
269
+ Contest_Size = st.number_input("Insert contest size", value=100, placeholder="Type a number under 10,000...")
270
+ strength_var1 = st.selectbox("How sharp is the field in the contest?", ('Very', 'Above Average', 'Average', 'Below Average', 'Not Very'))
271
+ if strength_var1 == 'Not Very':
272
+ sharp_split = 500000
273
+ elif strength_var1 == 'Below Average':
274
+ sharp_split = 250000
275
+ elif strength_var1 == 'Average':
276
+ sharp_split = 100000
277
+ elif strength_var1 == 'Above Average':
278
+ sharp_split = 50000
279
+ elif strength_var1 == 'Very':
280
+ sharp_split = 10000
281
+
282
+
283
+ with col2:
284
+ if st.button("Run Contest Sim"):
285
+ if 'working_seed' in st.session_state:
286
+ st.session_state.maps_dict = {
287
+ 'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
288
+ 'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
289
+ 'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
290
+ 'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
291
+ 'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
292
+ 'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
293
+ }
294
+ Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size, teams_playing_count)
295
+ Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
296
+
297
+ #st.table(Sim_Winner_Frame)
298
+
299
+ # Initial setup
300
+ Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
301
+ Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
302
+ Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
303
+ Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
304
+
305
+ # Type Casting
306
+ type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
307
+ Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
308
+
309
+ # Sorting
310
+ st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
311
+ st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
312
+
313
+ # Data Copying
314
+ st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
315
+ for col in st.session_state.Sim_Winner_Export.iloc[:, 0:9].columns:
316
+ st.session_state.Sim_Winner_Export[col] = st.session_state.Sim_Winner_Export[col].map(dk_id_dict)
317
+ st.session_state.Sim_Winner_Export = st.session_state.Sim_Winner_Export.drop_duplicates(subset=['Team', 'Secondary', 'salary', 'unique_id'])
318
+
319
+ # Data Copying
320
+ st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
321
+
322
+ else:
323
+ if sim_site_var1 == 'Draftkings':
324
+ if sim_slate_var1 == 'Main Slate':
325
+ st.session_state.working_seed = init_DK_seed_frames(sharp_split)
326
+
327
+ raw_baselines = dk_raw
328
+ column_names = dk_columns
329
+ elif sim_site_var1 == 'Fanduel':
330
+ if sim_slate_var1 == 'Main Slate':
331
+ st.session_state.working_seed = init_FD_seed_frames(sharp_split)
332
+
333
+ raw_baselines = fd_raw
334
+ column_names = fd_columns
335
+ st.session_state.maps_dict = {
336
+ 'Projection_map':dict(zip(raw_baselines.Player,raw_baselines.Median)),
337
+ 'Salary_map':dict(zip(raw_baselines.Player,raw_baselines.Salary)),
338
+ 'Pos_map':dict(zip(raw_baselines.Player,raw_baselines.Position)),
339
+ 'Own_map':dict(zip(raw_baselines.Player,raw_baselines['Own'])),
340
+ 'Team_map':dict(zip(raw_baselines.Player,raw_baselines.Team)),
341
+ 'STDev_map':dict(zip(raw_baselines.Player,raw_baselines.STDev))
342
+ }
343
+ Sim_Winners = sim_contest(1000, st.session_state.working_seed, st.session_state.maps_dict, Contest_Size, teams_playing_count)
344
+ Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners))
345
+
346
+ #st.table(Sim_Winner_Frame)
347
+
348
+ # Initial setup
349
+ Sim_Winner_Frame = pd.DataFrame(np.concatenate(Sim_Winners), columns=column_names + ['Fantasy'])
350
+ Sim_Winner_Frame['GPP_Proj'] = (Sim_Winner_Frame['proj'] + Sim_Winner_Frame['Fantasy']) / 2
351
+ Sim_Winner_Frame['unique_id'] = Sim_Winner_Frame['proj'].astype(str) + Sim_Winner_Frame['salary'].astype(str) + Sim_Winner_Frame['Team'].astype(str) + Sim_Winner_Frame['Secondary'].astype(str)
352
+ Sim_Winner_Frame = Sim_Winner_Frame.assign(win_count=Sim_Winner_Frame['unique_id'].map(Sim_Winner_Frame['unique_id'].value_counts()))
353
+
354
+ # Type Casting
355
+ type_cast_dict = {'salary': int, 'proj': np.float16, 'Fantasy': np.float16, 'GPP_Proj': np.float32, 'Own': np.float32}
356
+ Sim_Winner_Frame = Sim_Winner_Frame.astype(type_cast_dict)
357
+
358
+ # Sorting
359
+ st.session_state.Sim_Winner_Frame = Sim_Winner_Frame.sort_values(by=['win_count', 'GPP_Proj'], ascending= [False, False]).copy().drop_duplicates(subset='unique_id').head(100)
360
+ st.session_state.Sim_Winner_Frame.drop(columns='unique_id', inplace=True)
361
+
362
+ # Data Copying
363
+ st.session_state.Sim_Winner_Export = Sim_Winner_Frame.copy()
364
+ for col in st.session_state.Sim_Winner_Export.iloc[:, 0:9].columns:
365
+ st.session_state.Sim_Winner_Export[col] = st.session_state.Sim_Winner_Export[col].map(dk_id_dict)
366
+ st.session_state.Sim_Winner_Export = st.session_state.Sim_Winner_Export.drop_duplicates(subset=['Team', 'Secondary', 'salary', 'unique_id'])
367
+
368
+ # Data Copying
369
+ st.session_state.Sim_Winner_Display = Sim_Winner_Frame.copy()
370
+ st.session_state.freq_copy = st.session_state.Sim_Winner_Display
371
+
372
+ if sim_site_var1 == 'Draftkings':
373
+ freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)),
374
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
375
+ elif sim_site_var1 == 'Fanduel':
376
+ freq_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:9].values, return_counts=True)),
377
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
378
+ freq_working['Freq'] = freq_working['Freq'].astype(int)
379
+ freq_working['Position'] = freq_working['Player'].map(st.session_state.maps_dict['Pos_map'])
380
+ freq_working['Salary'] = freq_working['Player'].map(st.session_state.maps_dict['Salary_map'])
381
+ freq_working['Proj Own'] = freq_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
382
+ freq_working['Exposure'] = freq_working['Freq']/(1000)
383
+ freq_working['Edge'] = freq_working['Exposure'] - freq_working['Proj Own']
384
+ freq_working['Team'] = freq_working['Player'].map(st.session_state.maps_dict['Team_map'])
385
+ st.session_state.player_freq = freq_working.copy()
386
+
387
+ if sim_site_var1 == 'Draftkings':
388
+ center_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:2].values, return_counts=True)),
389
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
390
+ elif sim_site_var1 == 'Fanduel':
391
+ center_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,0:2].values, return_counts=True)),
392
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
393
+ center_working['Freq'] = center_working['Freq'].astype(int)
394
+ center_working['Position'] = center_working['Player'].map(st.session_state.maps_dict['Pos_map'])
395
+ center_working['Salary'] = center_working['Player'].map(st.session_state.maps_dict['Salary_map'])
396
+ center_working['Proj Own'] = center_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
397
+ center_working['Exposure'] = center_working['Freq']/(1000)
398
+ center_working['Edge'] = center_working['Exposure'] - center_working['Proj Own']
399
+ center_working['Team'] = center_working['Player'].map(st.session_state.maps_dict['Team_map'])
400
+ st.session_state.center_freq = center_working.copy()
401
+
402
+ if sim_site_var1 == 'Draftkings':
403
+ wing_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,2:5].values, return_counts=True)),
404
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
405
+ elif sim_site_var1 == 'Fanduel':
406
+ wing_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,2:4].values, return_counts=True)),
407
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
408
+ wing_working['Freq'] = wing_working['Freq'].astype(int)
409
+ wing_working['Position'] = wing_working['Player'].map(st.session_state.maps_dict['Pos_map'])
410
+ wing_working['Salary'] = wing_working['Player'].map(st.session_state.maps_dict['Salary_map'])
411
+ wing_working['Proj Own'] = wing_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
412
+ wing_working['Exposure'] = wing_working['Freq']/(1000)
413
+ wing_working['Edge'] = wing_working['Exposure'] - wing_working['Proj Own']
414
+ wing_working['Team'] = wing_working['Player'].map(st.session_state.maps_dict['Team_map'])
415
+ st.session_state.wing_freq = wing_working.copy()
416
+
417
+ if sim_site_var1 == 'Draftkings':
418
+ dmen_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,5:7].values, return_counts=True)),
419
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
420
+ elif sim_site_var1 == 'Fanduel':
421
+ dmen_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,4:6].values, return_counts=True)),
422
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
423
+ dmen_working['Freq'] = dmen_working['Freq'].astype(int)
424
+ dmen_working['Position'] = dmen_working['Player'].map(st.session_state.maps_dict['Pos_map'])
425
+ dmen_working['Salary'] = dmen_working['Player'].map(st.session_state.maps_dict['Salary_map'])
426
+ dmen_working['Proj Own'] = dmen_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
427
+ dmen_working['Exposure'] = dmen_working['Freq']/(1000)
428
+ dmen_working['Edge'] = dmen_working['Exposure'] - dmen_working['Proj Own']
429
+ dmen_working['Team'] = dmen_working['Player'].map(st.session_state.maps_dict['Team_map'])
430
+ st.session_state.dmen_freq = dmen_working.copy()
431
+
432
+ if sim_site_var1 == 'Draftkings':
433
+ flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,8:9].values, return_counts=True)),
434
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
435
+ elif sim_site_var1 == 'Fanduel':
436
+ flex_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,6:8].values, return_counts=True)),
437
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
438
+ flex_working['Freq'] = flex_working['Freq'].astype(int)
439
+ flex_working['Position'] = flex_working['Player'].map(st.session_state.maps_dict['Pos_map'])
440
+ flex_working['Salary'] = flex_working['Player'].map(st.session_state.maps_dict['Salary_map'])
441
+ flex_working['Proj Own'] = flex_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
442
+ flex_working['Exposure'] = flex_working['Freq']/(1000)
443
+ flex_working['Edge'] = flex_working['Exposure'] - flex_working['Proj Own']
444
+ flex_working['Team'] = flex_working['Player'].map(st.session_state.maps_dict['Team_map'])
445
+ st.session_state.flex_freq = flex_working.copy()
446
+
447
+ if sim_site_var1 == 'Draftkings':
448
+ goalie_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,7:8].values, return_counts=True)),
449
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
450
+ elif sim_site_var1 == 'Fanduel':
451
+ goalie_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,8:9].values, return_counts=True)),
452
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
453
+ goalie_working['Freq'] = goalie_working['Freq'].astype(int)
454
+ goalie_working['Position'] = goalie_working['Player'].map(st.session_state.maps_dict['Pos_map'])
455
+ goalie_working['Salary'] = goalie_working['Player'].map(st.session_state.maps_dict['Salary_map'])
456
+ goalie_working['Proj Own'] = goalie_working['Player'].map(st.session_state.maps_dict['Own_map']) / 100
457
+ goalie_working['Exposure'] = goalie_working['Freq']/(1000)
458
+ goalie_working['Edge'] = goalie_working['Exposure'] - goalie_working['Proj Own']
459
+ goalie_working['Team'] = goalie_working['Player'].map(st.session_state.maps_dict['Team_map'])
460
+ st.session_state.goalie_freq = goalie_working.copy()
461
+
462
+ if sim_site_var1 == 'Draftkings':
463
+ team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,11:12].values, return_counts=True)),
464
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
465
+ elif sim_site_var1 == 'Fanduel':
466
+ team_working = pd.DataFrame(np.column_stack(np.unique(st.session_state.freq_copy.iloc[:,11:12].values, return_counts=True)),
467
+ columns=['Player','Freq']).sort_values('Freq', ascending=False).reset_index(drop=True)
468
+ team_working['Freq'] = team_working['Freq'].astype(int)
469
+ team_working['Exposure'] = team_working['Freq']/(1000)
470
+ st.session_state.team_freq = team_working.copy()
471
+
472
+ with st.container():
473
+ if st.button("Reset Sim", key='reset_sim'):
474
+ for key in st.session_state.keys():
475
+ del st.session_state[key]
476
+ if 'player_freq' in st.session_state:
477
+ player_split_var2 = st.radio("Are you wanting to isolate any lineups with specific players?", ('Full Players', 'Specific Players'), key='player_split_var2')
478
+ if player_split_var2 == 'Specific Players':
479
+ find_var2 = st.multiselect('Which players must be included in the lineups?', options = st.session_state.player_freq['Player'].unique())
480
+ elif player_split_var2 == 'Full Players':
481
+ find_var2 = st.session_state.player_freq.Player.values.tolist()
482
+
483
+ if player_split_var2 == 'Specific Players':
484
+ st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame[np.equal.outer(st.session_state.Sim_Winner_Frame.to_numpy(), find_var2).any(axis=1).all(axis=1)]
485
+ if player_split_var2 == 'Full Players':
486
+ st.session_state.Sim_Winner_Display = st.session_state.Sim_Winner_Frame
487
+ if 'Sim_Winner_Display' in st.session_state:
488
+ st.dataframe(st.session_state.Sim_Winner_Display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
489
+ if 'Sim_Winner_Export' in st.session_state:
490
+ st.download_button(
491
+
492
+ label="Export Full Frame",
493
+ data=st.session_state.Sim_Winner_Export.to_csv().encode('utf-8'),
494
+ file_name='MLB_consim_export.csv',
495
+ mime='text/csv',
496
+ )
497
+ tab1, tab2, tab3 = st.tabs(['Winning Frame Statistics', 'Flex Exposure Statistics', 'Stack Type Statistics'])
498
+
499
+ with tab1:
500
+ if 'Sim_Winner_Display' in st.session_state:
501
+ # Create a new dataframe with summary statistics
502
+ summary_df = pd.DataFrame({
503
+ 'Metric': ['Min', 'Average', 'Max', 'STDdev'],
504
+ 'Salary': [
505
+ st.session_state.Sim_Winner_Display['salary'].min(),
506
+ st.session_state.Sim_Winner_Display['salary'].mean(),
507
+ st.session_state.Sim_Winner_Display['salary'].max(),
508
+ st.session_state.Sim_Winner_Display['salary'].std()
509
+ ],
510
+ 'Proj': [
511
+ st.session_state.Sim_Winner_Display['proj'].min(),
512
+ st.session_state.Sim_Winner_Display['proj'].mean(),
513
+ st.session_state.Sim_Winner_Display['proj'].max(),
514
+ st.session_state.Sim_Winner_Display['proj'].std()
515
+ ],
516
+ 'Own': [
517
+ st.session_state.Sim_Winner_Display['Own'].min(),
518
+ st.session_state.Sim_Winner_Display['Own'].mean(),
519
+ st.session_state.Sim_Winner_Display['Own'].max(),
520
+ st.session_state.Sim_Winner_Display['Own'].std()
521
+ ],
522
+ 'Fantasy': [
523
+ st.session_state.Sim_Winner_Display['Fantasy'].min(),
524
+ st.session_state.Sim_Winner_Display['Fantasy'].mean(),
525
+ st.session_state.Sim_Winner_Display['Fantasy'].max(),
526
+ st.session_state.Sim_Winner_Display['Fantasy'].std()
527
+ ],
528
+ 'GPP_Proj': [
529
+ st.session_state.Sim_Winner_Display['GPP_Proj'].min(),
530
+ st.session_state.Sim_Winner_Display['GPP_Proj'].mean(),
531
+ st.session_state.Sim_Winner_Display['GPP_Proj'].max(),
532
+ st.session_state.Sim_Winner_Display['GPP_Proj'].std()
533
+ ]
534
+ })
535
+
536
+ # Set the index of the summary dataframe as the "Metric" column
537
+ summary_df = summary_df.set_index('Metric')
538
+
539
+ # Display the summary dataframe
540
+ st.subheader("Winning Frame Statistics")
541
+ st.dataframe(summary_df.style.format({
542
+ 'Salary': '{:.2f}',
543
+ 'Proj': '{:.2f}',
544
+ 'Own': '{:.2f}',
545
+ 'Fantasy': '{:.2f}',
546
+ 'GPP_Proj': '{:.2f}'
547
+ }).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own', 'Fantasy', 'GPP_Proj']), use_container_width=True)
548
+
549
+ with tab2:
550
+ if 'Sim_Winner_Display' in st.session_state:
551
+ # Apply position mapping to FLEX column
552
+ if sim_site_var1 == 'Draftkings':
553
+ flex_positions = st.session_state.freq_copy['FLEX'].map(st.session_state.maps_dict['Pos_map'])
554
+ elif sim_site_var1 == 'Fanduel':
555
+ flex1_positions = st.session_state.freq_copy['FLEX1'].map(st.session_state.maps_dict['Pos_map'])
556
+ flex2_positions = st.session_state.freq_copy['FLEX2'].map(st.session_state.maps_dict['Pos_map'])
557
+ flex_positions = pd.concat([flex1_positions, flex2_positions])
558
+
559
+ # Count occurrences of each position in FLEX
560
+ flex_counts = flex_positions.value_counts()
561
+
562
+ # Calculate average statistics for each FLEX position
563
+ flex_stats = st.session_state.freq_copy.groupby(flex_positions).agg({
564
+ 'proj': 'mean',
565
+ 'Own': 'mean',
566
+ 'Fantasy': 'mean',
567
+ 'GPP_Proj': 'mean'
568
+ })
569
+
570
+ # Combine counts and average statistics
571
+ flex_summary = pd.concat([flex_counts, flex_stats], axis=1)
572
+ flex_summary.columns = ['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']
573
+ flex_summary = flex_summary.reset_index()
574
+ flex_summary.columns = ['Position', 'Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']
575
+
576
+ # Display the summary dataframe
577
+ st.subheader("FLEX Position Statistics")
578
+ st.dataframe(flex_summary.style.format({
579
+ 'Count': '{:.0f}',
580
+ 'Avg Proj': '{:.2f}',
581
+ 'Avg Own': '{:.2f}',
582
+ 'Avg Fantasy': '{:.2f}',
583
+ 'Avg GPP_Proj': '{:.2f}'
584
+ }).background_gradient(cmap='RdYlGn', axis=0, subset=['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']), use_container_width=True)
585
+ else:
586
+ st.write("Simulation data or position mapping not available.")
587
+
588
+ with tab3:
589
+ if 'Sim_Winner_Display' in st.session_state:
590
+ # Apply position mapping to FLEX column
591
+ stack_counts = st.session_state.freq_copy['Team_count'].value_counts()
592
+
593
+ # Calculate average statistics for each stack size
594
+ stack_stats = st.session_state.freq_copy.groupby('Team_count').agg({
595
+ 'proj': 'mean',
596
+ 'Own': 'mean',
597
+ 'Fantasy': 'mean',
598
+ 'GPP_Proj': 'mean'
599
+ })
600
+
601
+ # Combine counts and average statistics
602
+ stack_summary = pd.concat([stack_counts, stack_stats], axis=1)
603
+ stack_summary.columns = ['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']
604
+ stack_summary = stack_summary.reset_index()
605
+ stack_summary.columns = ['Stack Size', 'Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']
606
+ stack_summary = stack_summary.sort_values(by='Stack Size', ascending=True)
607
+ stack_summary = stack_summary.set_index('Stack Size')
608
+
609
+ # Display the summary dataframe
610
+ st.subheader("Stack Type Statistics")
611
+ st.dataframe(stack_summary.style.format({
612
+ 'Count': '{:.0f}',
613
+ 'Avg Proj': '{:.2f}',
614
+ 'Avg Own': '{:.2f}',
615
+ 'Avg Fantasy': '{:.2f}',
616
+ 'Avg GPP_Proj': '{:.2f}'
617
+ }).background_gradient(cmap='RdYlGn', axis=0, subset=['Count', 'Avg Proj', 'Avg Own', 'Avg Fantasy', 'Avg GPP_Proj']), use_container_width=True)
618
+ else:
619
+ st.write("Simulation data or position mapping not available.")
620
+
621
+
622
+ with st.container():
623
+ tab1, tab2, tab3, tab4, tab5, tab6, tab7 = st.tabs(['Overall Exposures', 'Center Exposures', 'Wing Exposures', 'Defense Exposures', 'Flex Exposures', 'Goalie Exposures', 'Team Exposures'])
624
+ with tab1:
625
+ if 'player_freq' in st.session_state:
626
+
627
+ st.dataframe(st.session_state.player_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
628
+ st.download_button(
629
+ label="Export Exposures",
630
+ data=st.session_state.player_freq.to_csv().encode('utf-8'),
631
+ file_name='player_freq_export.csv',
632
+ mime='text/csv',
633
+ key='overall'
634
+ )
635
+ with tab2:
636
+ if 'center_freq' in st.session_state:
637
+
638
+ st.dataframe(st.session_state.center_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
639
+ st.download_button(
640
+ label="Export Exposures",
641
+ data=st.session_state.center_freq.to_csv().encode('utf-8'),
642
+ file_name='center_freq.csv',
643
+ mime='text/csv',
644
+ key='center'
645
+ )
646
+ with tab3:
647
+ if 'wing_freq' in st.session_state:
648
+
649
+ st.dataframe(st.session_state.wing_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
650
+ st.download_button(
651
+ label="Export Exposures",
652
+ data=st.session_state.wing_freq.to_csv().encode('utf-8'),
653
+ file_name='wing_freq.csv',
654
+ mime='text/csv',
655
+ key='wing'
656
+ )
657
+ with tab4:
658
+ if 'dmen_freq' in st.session_state:
659
+
660
+ st.dataframe(st.session_state.dmen_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
661
+ st.download_button(
662
+ label="Export Exposures",
663
+ data=st.session_state.dmen_freq.to_csv().encode('utf-8'),
664
+ file_name='dmen_freq.csv',
665
+ mime='text/csv',
666
+ key='dmen'
667
+ )
668
+ with tab5:
669
+ if 'flex_freq' in st.session_state:
670
+
671
+ st.dataframe(st.session_state.flex_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
672
+ st.download_button(
673
+ label="Export Exposures",
674
+ data=st.session_state.flex_freq.to_csv().encode('utf-8'),
675
+ file_name='flex_freq.csv',
676
+ mime='text/csv',
677
+ key='flex'
678
+ )
679
+ with tab6:
680
+ if 'goalie_freq' in st.session_state:
681
+
682
+ st.dataframe(st.session_state.goalie_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(freq_format, precision=2), use_container_width = True)
683
+ st.download_button(
684
+ label="Export Exposures",
685
+ data=st.session_state.goalie_freq.to_csv().encode('utf-8'),
686
+ file_name='goalie_freq.csv',
687
+ mime='text/csv',
688
+ key='goalie'
689
+ )
690
+ with tab7:
691
+ if 'team_freq' in st.session_state:
692
+
693
+ st.dataframe(st.session_state.team_freq.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(percentages_format, precision=2), use_container_width = True)
694
+ st.download_button(
695
+ label="Export Exposures",
696
+ data=st.session_state.team_freq.to_csv().encode('utf-8'),
697
+ file_name='team_freq.csv',
698
+ mime='text/csv',
699
+ key='team'
700
+ )
app.yaml ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ runtime: python
2
+ env: flex
3
+
4
+ runtime_config:
5
+ python_version: 3
6
+
7
+ entrypoint: streamlit run streamlit-app.py --server.port $PORT
8
+
9
+ automatic_scaling:
10
+ max_num_instances: 1000
requirements.txt ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ streamlit
2
+ gspread
3
+ openpyxl
4
+ matplotlib
5
+ pymongo
6
+ pulp
7
+ docker
8
+ plotly
9
+ scipy
10
+ polars