James McCool commited on
Commit
629b5f7
·
1 Parent(s): 5898ebf

Add Streamlit app for NHL pivot analysis with MongoDB integration and deployment configuration

Browse files
Files changed (3) hide show
  1. app.py +328 -0
  2. app.yaml +10 -0
  3. requirements.txt +9 -0
app.py ADDED
@@ -0,0 +1,328 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from numpy import random
3
+ import pandas as pd
4
+ import streamlit as st
5
+ import pymongo
6
+
7
+ st.set_page_config(layout="wide")
8
+
9
+ @st.cache_resource
10
+ def init_conn():
11
+ uri = st.secrets['mongo_uri']
12
+ client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
13
+ db = client["NHL_Database"]
14
+
15
+ return db
16
+
17
+ db = init_conn()
18
+
19
+ wrong_acro = ['WSH', 'AZ']
20
+ right_acro = ['WAS', 'ARI']
21
+
22
+ game_format = {'Win Percentage': '{:.2%}','First Inning Lead Percentage': '{:.2%}',
23
+ 'Fifth Inning Lead Percentage': '{:.2%}', '8+ runs': '{:.2%}', 'DK LevX': '{:.2%}', 'FD LevX': '{:.2%}'}
24
+
25
+ team_roo_format = {'Top Score%': '{:.2%}','0 Runs': '{:.2%}', '1 Run': '{:.2%}', '2 Runs': '{:.2%}', '3 Runs': '{:.2%}', '4 Runs': '{:.2%}',
26
+ '5 Runs': '{:.2%}','6 Runs': '{:.2%}', '7 Runs': '{:.2%}', '8 Runs': '{:.2%}', '9 Runs': '{:.2%}', '10 Runs': '{:.2%}'}
27
+
28
+ player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
29
+ '4x%': '{:.2%}','GPP%': '{:.2%}'}
30
+
31
+ @st.cache_resource(ttl = 599)
32
+ def player_stat_table():
33
+ collection = db["Player_Level_ROO"]
34
+ cursor = collection.find()
35
+ load_display = pd.DataFrame(cursor)
36
+
37
+ load_display.replace('', np.nan, inplace=True)
38
+ player_stats = load_display.copy()
39
+
40
+ dk_load_display = load_display[load_display['Site'] == 'Draftkings']
41
+ fd_load_display = load_display[load_display['Site'] == 'Fanduel']
42
+
43
+ dk_load_display = dk_load_display.sort_values(by='Own', ascending=False)
44
+ fd_load_display = fd_load_display.sort_values(by='Own', ascending=False)
45
+
46
+ dk_load_display = dk_load_display.dropna(subset=['Own'])
47
+ fd_load_display = fd_load_display.dropna(subset=['Own'])
48
+
49
+ dk_roo_raw = dk_load_display
50
+ fd_roo_raw = fd_load_display
51
+
52
+ return player_stats, dk_roo_raw, fd_roo_raw
53
+
54
+ @st.cache_data
55
+ def convert_df_to_csv(df):
56
+ return df.to_csv().encode('utf-8')
57
+
58
+ player_stats, dk_roo_raw, fd_roo_raw = player_stat_table()
59
+ opp_dict = dict(zip(dk_roo_raw.Team, dk_roo_raw.Opp))
60
+ t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
61
+
62
+ tab1, tab2 = st.tabs(['Pivot Finder', 'Uploads and Info'])
63
+
64
+ with tab1:
65
+ col1, col2 = st.columns([1, 5])
66
+ with col1:
67
+ st.info(t_stamp)
68
+ if st.button("Load/Reset Data", key='reset1'):
69
+ st.cache_data.clear()
70
+ for key in st.session_state.keys():
71
+ del st.session_state[key]
72
+ player_stats, dk_roo_raw, fd_roo_raw = player_stat_table()
73
+ opp_dict = dict(zip(dk_roo_raw.Team, dk_roo_raw.Opp))
74
+ t_stamp = f"Last Update: " + str(dk_roo_raw['timestamp'][0]) + f" CST"
75
+ data_var1 = st.radio("Which data are you loading?", ('Paydirt', 'User'), key='data_var1')
76
+ site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'), key='site_var1')
77
+ if site_var1 == 'Draftkings':
78
+ if data_var1 == 'User':
79
+ raw_baselines = proj_dataframe
80
+ elif data_var1 != 'User':
81
+ raw_baselines = dk_roo_raw[dk_roo_raw['Slate'] == 'Main Slate']
82
+ raw_baselines = raw_baselines.sort_values(by='Own', ascending=False)
83
+ elif site_var1 == 'Fanduel':
84
+ if data_var1 == 'User':
85
+ raw_baselines = proj_dataframe
86
+ elif data_var1 != 'User':
87
+ raw_baselines = fd_roo_raw[fd_roo_raw['Slate'] == 'Main Slate']
88
+ raw_baselines = raw_baselines.sort_values(by='Own', ascending=False)
89
+ check_seq = st.radio("Do you want to check a single player or the top 10 in ownership?", ('Single Player', 'Top X Owned'), key='check_seq')
90
+ if check_seq == 'Single Player':
91
+ player_check = st.selectbox('Select player to create comps', options = raw_baselines['Player'].unique(), key='dk_player')
92
+ elif check_seq == 'Top X Owned':
93
+ top_x_var = st.number_input('How many players would you like to check?', min_value = 1, max_value = 10, value = 5, step = 1)
94
+ Salary_var = st.number_input('Acceptable +/- Salary range', min_value = 0, max_value = 1000, value = 300, step = 100)
95
+ Median_var = st.number_input('Acceptable +/- Median range', min_value = 0, max_value = 10, value = 3, step = 1)
96
+ pos_var1 = st.radio("Compare to all positions or specific positions?", ('All Positions', 'Specific Positions'), key='pos_var1')
97
+ if pos_var1 == 'Specific Positions':
98
+ pos_var_list = st.multiselect('Which positions would you like to include?', options = raw_baselines['Position'].unique(), key='pos_var_list')
99
+ elif pos_var1 == 'All Positions':
100
+ pos_var_list = raw_baselines.Position.values.tolist()
101
+ split_var1 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
102
+ if split_var1 == 'Specific Games':
103
+ team_var1 = st.multiselect('Which teams would you like to include?', options = raw_baselines['Team'].unique(), key='team_var1')
104
+ elif split_var1 == 'Full Slate Run':
105
+ team_var1 = raw_baselines.Team.values.tolist()
106
+
107
+ with col2:
108
+ placeholder = st.empty()
109
+ displayholder = st.empty()
110
+
111
+ if st.button('Simulate appropriate pivots'):
112
+ with placeholder:
113
+ if site_var1 == 'Draftkings':
114
+ working_roo = raw_baselines
115
+ working_roo.replace('', 0, inplace=True)
116
+ if site_var1 == 'Fanduel':
117
+ working_roo = raw_baselines
118
+ working_roo.replace('', 0, inplace=True)
119
+
120
+ own_dict = dict(zip(working_roo.Player, working_roo.Own))
121
+ team_dict = dict(zip(working_roo.Player, working_roo.Team))
122
+ opp_dict = dict(zip(working_roo.Player, working_roo.Opp))
123
+ pos_dict = dict(zip(working_roo.Player, working_roo.Position))
124
+ total_sims = 1000
125
+
126
+ if check_seq == 'Single Player':
127
+ player_var = working_roo.loc[working_roo['Player'] == player_check]
128
+ player_var = player_var.reset_index()
129
+
130
+ working_roo = working_roo[working_roo['Position'].isin(pos_var_list)]
131
+ working_roo = working_roo[working_roo['Team'].isin(team_var1)]
132
+ working_roo = working_roo.loc[(working_roo['Salary'] >= player_var['Salary'][0] - Salary_var) & (working_roo['Salary'] <= player_var['Salary'][0] + Salary_var)]
133
+ working_roo = working_roo.loc[(working_roo['Median'] >= player_var['Median'][0] - Median_var) & (working_roo['Median'] <= player_var['Median'][0] + Median_var)]
134
+
135
+ flex_file = working_roo[['Player', 'Position', 'Salary', 'Median']]
136
+ flex_file['Floor_raw'] = flex_file['Median'] * .25
137
+ flex_file['Ceiling_raw'] = flex_file['Median'] * 2
138
+ flex_file['Floor'] = np.where(flex_file['Position'] == 'G', flex_file['Median'] * .5, flex_file['Floor_raw'])
139
+ flex_file['Floor'] = np.where(flex_file['Position'] == 'D', flex_file['Median'] * .1, flex_file['Floor_raw'])
140
+ flex_file['Ceiling'] = np.where(flex_file['Position'] == 'G', flex_file['Median'] * 1.75, flex_file['Ceiling_raw'])
141
+ flex_file['Ceiling'] = np.where(flex_file['Position'] == 'D', flex_file['Median'] * 1.75, flex_file['Ceiling_raw'])
142
+ flex_file['STD'] = flex_file['Median'] / 3
143
+ flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
144
+ hold_file = flex_file.copy()
145
+ overall_file = flex_file.copy()
146
+ salary_file = flex_file.copy()
147
+
148
+ overall_players = overall_file[['Player']]
149
+
150
+ for x in range(0,total_sims):
151
+ salary_file[x] = salary_file['Salary']
152
+ overall_file[x] = random.normal(overall_file['Median'],overall_file['STD'])
153
+
154
+ salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
155
+
156
+ salary_file = salary_file.div(1000)
157
+
158
+ overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
159
+
160
+ players_only = hold_file[['Player']]
161
+ raw_lineups_file = players_only
162
+
163
+ for x in range(0,total_sims):
164
+ maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))}
165
+ raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
166
+ players_only[x] = raw_lineups_file[x].rank(ascending=False)
167
+
168
+ players_only=players_only.drop(['Player'], axis=1)
169
+
170
+ salary_2x_check = (overall_file - (salary_file*2))
171
+ salary_3x_check = (overall_file - (salary_file*3))
172
+ salary_4x_check = (overall_file - (salary_file*4))
173
+
174
+ players_only['Average_Rank'] = players_only.mean(axis=1)
175
+ players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
176
+ players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
177
+ players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
178
+ players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
179
+ players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
180
+ players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
181
+ players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
182
+
183
+ players_only['Player'] = hold_file[['Player']]
184
+
185
+ final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
186
+
187
+ final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
188
+ final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
189
+ final_Proj['Own'] = final_Proj['Player'].map(own_dict)
190
+ final_Proj['Team'] = final_Proj['Player'].map(team_dict)
191
+ final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
192
+ final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
193
+ final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
194
+ final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
195
+ final_Proj['LevX'] = 0
196
+ final_Proj['LevX'] = np.where(final_Proj['Position'] == 'C', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
197
+ final_Proj['LevX'] = np.where(final_Proj['Position'] == 'W', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
198
+ final_Proj['LevX'] = np.where(final_Proj['Position'] == 'D', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
199
+ final_Proj['LevX'] = np.where(final_Proj['Position'] == 'G', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
200
+ final_Proj['CPT_Own'] = final_Proj['Own'] / 4
201
+
202
+ final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'LevX']]
203
+ final_Proj = final_Proj.set_index('Player')
204
+ st.session_state.final_Proj = final_Proj.sort_values(by='Top_finish', ascending=False)
205
+
206
+ elif check_seq == 'Top X Owned':
207
+ if pos_var1 == 'Specific Positions':
208
+ raw_baselines = raw_baselines[raw_baselines['Position'].isin(pos_var_list)]
209
+ player_check = raw_baselines['Player'].head(top_x_var).tolist()
210
+ final_proj_list = []
211
+ for players in player_check:
212
+ players_pos = pos_dict[players]
213
+ player_var = working_roo.loc[working_roo['Player'] == players]
214
+ player_var = player_var.reset_index()
215
+ working_roo_temp = working_roo[working_roo['Position'] == players_pos]
216
+ working_roo_temp = working_roo_temp[working_roo_temp['Team'].isin(team_var1)]
217
+ working_roo_temp = working_roo_temp.loc[(working_roo_temp['Salary'] >= player_var['Salary'][0] - Salary_var) & (working_roo_temp['Salary'] <= player_var['Salary'][0] + Salary_var)]
218
+ working_roo_temp = working_roo_temp.loc[(working_roo_temp['Median'] >= player_var['Median'][0] - Median_var) & (working_roo_temp['Median'] <= player_var['Median'][0] + Median_var)]
219
+
220
+ flex_file = working_roo_temp[['Player', 'Position', 'Salary', 'Median']]
221
+ flex_file['Floor_raw'] = flex_file['Median'] * .25
222
+ flex_file['Ceiling_raw'] = flex_file['Median'] * 2
223
+ flex_file['Floor'] = np.where(flex_file['Position'] == 'G', flex_file['Median'] * .5, flex_file['Floor_raw'])
224
+ flex_file['Floor'] = np.where(flex_file['Position'] == 'D', flex_file['Median'] * .1, flex_file['Floor_raw'])
225
+ flex_file['Ceiling'] = np.where(flex_file['Position'] == 'G', flex_file['Median'] * 1.75, flex_file['Ceiling_raw'])
226
+ flex_file['Ceiling'] = np.where(flex_file['Position'] == 'D', flex_file['Median'] * 1.75, flex_file['Ceiling_raw'])
227
+ flex_file['STD'] = flex_file['Median'] / 3
228
+ flex_file = flex_file[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD']]
229
+ hold_file = flex_file.copy()
230
+ overall_file = flex_file.copy()
231
+ salary_file = flex_file.copy()
232
+
233
+ overall_players = overall_file[['Player']]
234
+
235
+ for x in range(0,total_sims):
236
+ salary_file[x] = salary_file['Salary']
237
+ overall_file[x] = random.normal(overall_file['Median'],overall_file['STD'])
238
+
239
+ salary_file=salary_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
240
+
241
+ salary_file = salary_file.div(1000)
242
+
243
+ overall_file=overall_file.drop(['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
244
+
245
+ players_only = hold_file[['Player']]
246
+ raw_lineups_file = players_only
247
+
248
+ for x in range(0,total_sims):
249
+ maps_dict = {'proj_map':dict(zip(hold_file.Player,overall_file[x]))}
250
+ raw_lineups_file[x] = sum([raw_lineups_file['Player'].map(maps_dict['proj_map'])])
251
+ players_only[x] = raw_lineups_file[x].rank(ascending=False)
252
+
253
+ players_only=players_only.drop(['Player'], axis=1)
254
+
255
+ salary_2x_check = (overall_file - (salary_file*2))
256
+ salary_3x_check = (overall_file - (salary_file*3))
257
+ salary_4x_check = (overall_file - (salary_file*4))
258
+
259
+ players_only['Average_Rank'] = players_only.mean(axis=1)
260
+ players_only['Top_finish'] = players_only[players_only == 1].count(axis=1)/total_sims
261
+ players_only['Top_5_finish'] = players_only[players_only <= 5].count(axis=1)/total_sims
262
+ players_only['Top_10_finish'] = players_only[players_only <= 10].count(axis=1)/total_sims
263
+ players_only['20+%'] = overall_file[overall_file >= 20].count(axis=1)/float(total_sims)
264
+ players_only['2x%'] = salary_2x_check[salary_2x_check >= 1].count(axis=1)/float(total_sims)
265
+ players_only['3x%'] = salary_3x_check[salary_3x_check >= 1].count(axis=1)/float(total_sims)
266
+ players_only['4x%'] = salary_4x_check[salary_4x_check >= 1].count(axis=1)/float(total_sims)
267
+
268
+ players_only['Player'] = hold_file[['Player']]
269
+
270
+ final_outcomes = players_only[['Player', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
271
+
272
+ final_Proj = pd.merge(hold_file, final_outcomes, on="Player")
273
+ final_Proj = final_Proj[['Player', 'Position', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%']]
274
+ final_Proj['Own'] = final_Proj['Player'].map(own_dict)
275
+ final_Proj['Team'] = final_Proj['Player'].map(team_dict)
276
+ final_Proj['Opp'] = final_Proj['Player'].map(opp_dict)
277
+ final_Proj = final_Proj[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own']]
278
+ final_Proj['Projection Rank'] = final_Proj.Median.rank(pct = True)
279
+ final_Proj['Own Rank'] = final_Proj.Own.rank(pct = True)
280
+ final_Proj['LevX'] = 0
281
+ final_Proj['LevX'] = np.where(final_Proj['Position'] == 'C', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
282
+ final_Proj['LevX'] = np.where(final_Proj['Position'] == 'W', final_Proj[['Projection Rank', 'Top_5_finish']].mean(axis=1) + final_Proj['20+%'] - final_Proj['Own Rank'], final_Proj['LevX'])
283
+ final_Proj['LevX'] = np.where(final_Proj['Position'] == 'D', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
284
+ final_Proj['LevX'] = np.where(final_Proj['Position'] == 'G', final_Proj[['Projection Rank', '2x%']].mean(axis=1) + final_Proj['4x%'] - final_Proj['Own Rank'], final_Proj['LevX'])
285
+ final_Proj['CPT_Own'] = final_Proj['Own'] / 4
286
+ final_Proj['Pivot_source'] = players
287
+
288
+ final_Proj = final_Proj[['Player', 'Pivot_source', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own', 'LevX']]
289
+
290
+ final_Proj = final_Proj.sort_values(by='Top_finish', ascending=False)
291
+ final_proj_list.append(final_Proj)
292
+ st.write(f'finished run for {players}')
293
+
294
+ # Concatenate all the final_Proj dataframes
295
+ final_Proj_combined = pd.concat(final_proj_list)
296
+ final_Proj_combined = final_Proj_combined.sort_values(by='LevX', ascending=False)
297
+ final_Proj_combined = final_Proj_combined[final_Proj_combined['Player'] != final_Proj_combined['Pivot_source']]
298
+ st.session_state.final_Proj = final_Proj_combined.reset_index(drop=True) # Assign the combined dataframe back to final_Proj
299
+ placeholder.empty()
300
+
301
+ with displayholder.container():
302
+ if 'final_Proj' in st.session_state:
303
+ st.dataframe(st.session_state.final_Proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
304
+
305
+ st.download_button(
306
+ label="Export Tables",
307
+ data=convert_df_to_csv(st.session_state.final_Proj),
308
+ file_name='NHL_pivot_export.csv',
309
+ mime='text/csv',
310
+ )
311
+ else:
312
+ st.write("Run some pivots my dude/dudette")
313
+
314
+ with tab2:
315
+ st.info("The Projections file can have any columns in any order, but must contain columns explicitly named: 'Player', 'Salary', 'Position', 'Team', 'Opp', 'Median', and 'Own'.")
316
+ col1, col2 = st.columns([1, 5])
317
+
318
+ with col1:
319
+ proj_file = st.file_uploader("Upload Projections File", key = 'proj_uploader')
320
+
321
+ if proj_file is not None:
322
+ try:
323
+ proj_dataframe = pd.read_csv(proj_file)
324
+ except:
325
+ proj_dataframe = pd.read_excel(proj_file)
326
+ with col2:
327
+ if proj_file is not None:
328
+ st.dataframe(proj_dataframe.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
app.yaml ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ runtime: python
2
+ env: flex
3
+
4
+ runtime_config:
5
+ python_version: 3
6
+
7
+ entrypoint: streamlit run streamlit-app.py --server.port $PORT
8
+
9
+ automatic_scaling:
10
+ max_num_instances: 200
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ streamlit
2
+ gspread
3
+ openpyxl
4
+ matplotlib
5
+ pymongo
6
+ pulp
7
+ docker
8
+ plotly
9
+ scipy