Spaces:
Sleeping
Sleeping
James McCool
commited on
Commit
·
69200bc
1
Parent(s):
80caf35
Add Streamlit app for NHL player statistics with MongoDB integration
Browse files- app.py +155 -0
- app.yaml +10 -0
- requirements.txt +10 -0
app.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
st.set_page_config(layout="wide")
|
3 |
+
|
4 |
+
for name in dir():
|
5 |
+
if not name.startswith('_'):
|
6 |
+
del globals()[name]
|
7 |
+
|
8 |
+
import pulp
|
9 |
+
import numpy as np
|
10 |
+
import pandas as pd
|
11 |
+
import streamlit as st
|
12 |
+
import pymongo
|
13 |
+
from itertools import combinations
|
14 |
+
|
15 |
+
@st.cache_resource
|
16 |
+
def init_conn():
|
17 |
+
uri = st.secrets['mongo_uri']
|
18 |
+
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
|
19 |
+
db = client["NHL_Database"]
|
20 |
+
|
21 |
+
return db
|
22 |
+
|
23 |
+
db = init_conn()
|
24 |
+
|
25 |
+
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
|
26 |
+
'4x%': '{:.2%}'}
|
27 |
+
|
28 |
+
@st.cache_resource(ttl=200)
|
29 |
+
def player_stat_table():
|
30 |
+
collection = db["Player_Level_ROO"]
|
31 |
+
cursor = collection.find()
|
32 |
+
player_frame = pd.DataFrame(cursor)
|
33 |
+
player_frame = player_frame[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own',
|
34 |
+
'Small Field Own%', 'Large Field Own%', 'Cash Own%', 'CPT_Own', 'Site', 'Type', 'Slate', 'player_id', 'timestamp']]
|
35 |
+
|
36 |
+
collection = db["Player_Lines_ROO"]
|
37 |
+
cursor = collection.find()
|
38 |
+
line_frame = pd.DataFrame(cursor)
|
39 |
+
line_frame = line_frame[['Player', 'SK1', 'SK2', 'SK3', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '50+%', '2x%', '3x%', '4x%', 'Own', 'Site', 'Type', 'Slate']]
|
40 |
+
|
41 |
+
collection = db["Player_Powerplay_ROO"]
|
42 |
+
cursor = collection.find()
|
43 |
+
pp_frame = pd.DataFrame(cursor)
|
44 |
+
pp_frame = pp_frame[['Player', 'SK1', 'SK2', 'SK3', 'SK4', 'SK5', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '75+%', '2x%', '3x%', '4x%', 'Own', 'Site', 'Type', 'Slate']]
|
45 |
+
|
46 |
+
timestamp = player_frame['timestamp'].values[0]
|
47 |
+
|
48 |
+
return player_frame, line_frame, pp_frame, timestamp
|
49 |
+
|
50 |
+
@st.cache_data
|
51 |
+
def convert_df_to_csv(df):
|
52 |
+
return df.to_csv().encode('utf-8')
|
53 |
+
|
54 |
+
player_frame, line_frame, pp_frame, timestamp = player_stat_table()
|
55 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
56 |
+
|
57 |
+
tab1, tab2, tab3 = st.tabs(["Player Range of Outcomes", "Line Combo Range of Outcomes", "Power Play Range of Outcomes"])
|
58 |
+
|
59 |
+
with tab1:
|
60 |
+
col1, col2 = st.columns([1, 7])
|
61 |
+
with col1:
|
62 |
+
st.info(t_stamp)
|
63 |
+
if st.button("Load/Reset Data", key='reset1'):
|
64 |
+
st.cache_data.clear()
|
65 |
+
player_frame, line_frame, pp_frame, timestamp = player_stat_table()
|
66 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
67 |
+
site_var1 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var1')
|
68 |
+
main_var1 = st.radio("Main slate or secondary slate?", ('Main Slate', 'Secondary Slate'), key='main_var1')
|
69 |
+
split_var1 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
|
70 |
+
if split_var1 == 'Specific Games':
|
71 |
+
team_var1 = st.multiselect('Which teams would you like to include in the ROO?', options = player_frame['Team'].unique(), key='team_var1')
|
72 |
+
elif split_var1 == 'Full Slate Run':
|
73 |
+
team_var1 = player_frame.Team.values.tolist()
|
74 |
+
pos_split1 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split1')
|
75 |
+
if pos_split1 == 'Specific Positions':
|
76 |
+
pos_var1 = st.multiselect('What Positions would you like to view?', options = ['C', 'W', 'D', 'G'])
|
77 |
+
elif pos_split1 == 'All Positions':
|
78 |
+
pos_var1 = 'All'
|
79 |
+
sal_var1 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 20000), key='sal_var1')
|
80 |
+
|
81 |
+
with col2:
|
82 |
+
final_Proj = player_frame[player_frame['Site'] == str(site_var1)]
|
83 |
+
final_Proj = final_Proj[final_Proj['Type'] == 'Basic']
|
84 |
+
final_Proj = final_Proj[final_Proj['Slate'] == main_var1]
|
85 |
+
final_Proj = final_Proj[player_frame['Team'].isin(team_var1)]
|
86 |
+
final_Proj = final_Proj[final_Proj['Salary'] >= sal_var1[0]]
|
87 |
+
final_Proj = final_Proj[final_Proj['Salary'] <= sal_var1[1]]
|
88 |
+
if pos_var1 != 'All':
|
89 |
+
final_Proj = final_Proj[final_Proj['Position'].str.contains('|'.join(pos_var1))]
|
90 |
+
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
91 |
+
if pos_var1 == 'All':
|
92 |
+
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
|
93 |
+
st.dataframe(final_Proj.iloc[:, :-3].style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
|
94 |
+
st.download_button(
|
95 |
+
label="Export Tables",
|
96 |
+
data=convert_df_to_csv(final_Proj),
|
97 |
+
file_name='NHL_player_export.csv',
|
98 |
+
mime='text/csv',
|
99 |
+
)
|
100 |
+
|
101 |
+
with tab2:
|
102 |
+
col1, col2 = st.columns([1, 7])
|
103 |
+
with col1:
|
104 |
+
st.info(t_stamp)
|
105 |
+
if st.button("Load/Reset Data", key='reset2'):
|
106 |
+
st.cache_data.clear()
|
107 |
+
player_frame, line_frame, pp_frame, timestamp = player_stat_table()
|
108 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
109 |
+
site_var2 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var2')
|
110 |
+
main_var2 = st.radio("Main slate or secondary slate?", ('Main Slate', 'Secondary Slate'), key='main_var2')
|
111 |
+
sal_var2 = st.slider("Is there a certain price range you want to view?", 5000, 40000, (5000, 40000), key='sal_var2')
|
112 |
+
|
113 |
+
with col2:
|
114 |
+
final_line_combos = line_frame[line_frame['Site'] == str(site_var2)]
|
115 |
+
final_line_combos = final_line_combos[final_line_combos['Type'] == 'Basic']
|
116 |
+
final_line_combos = final_line_combos[final_line_combos['Slate'] == main_var2]
|
117 |
+
final_line_combos = final_line_combos[final_line_combos['Salary'] >= sal_var2[0]]
|
118 |
+
final_line_combos = final_line_combos[final_line_combos['Salary'] <= sal_var2[1]]
|
119 |
+
final_line_combos = final_line_combos.drop_duplicates(subset=['Player'])
|
120 |
+
final_line_combos = final_line_combos.sort_values(by='Median', ascending=False)
|
121 |
+
st.dataframe(final_line_combos.iloc[:, :-3].style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
122 |
+
st.download_button(
|
123 |
+
label="Export Tables",
|
124 |
+
data=convert_df_to_csv(final_line_combos),
|
125 |
+
file_name='NHL_linecombos_export.csv',
|
126 |
+
mime='text/csv',
|
127 |
+
)
|
128 |
+
|
129 |
+
with tab3:
|
130 |
+
col1, col2 = st.columns([1, 7])
|
131 |
+
with col1:
|
132 |
+
st.info(t_stamp)
|
133 |
+
if st.button("Load/Reset Data", key='reset3'):
|
134 |
+
st.cache_data.clear()
|
135 |
+
player_frame, line_frame, pp_frame, timestamp = player_stat_table()
|
136 |
+
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
|
137 |
+
site_var3 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var3')
|
138 |
+
main_var3 = st.radio("Main slate or secondary slate?", ('Main Slate', 'Secondary Slate'), key='main_var3')
|
139 |
+
sal_var3 = st.slider("Is there a certain price range you want to view?", 5000, 40000, (5000, 40000), key='sal_var3')
|
140 |
+
|
141 |
+
with col2:
|
142 |
+
final_pp_combos = pp_frame[pp_frame['Site'] == str(site_var3)]
|
143 |
+
final_pp_combos = final_pp_combos[final_pp_combos['Type'] == 'Basic']
|
144 |
+
final_pp_combos = final_pp_combos[final_pp_combos['Slate'] == main_var3]
|
145 |
+
final_pp_combos = final_pp_combos[final_pp_combos['Salary'] >= sal_var3[0]]
|
146 |
+
final_pp_combos = final_pp_combos[final_pp_combos['Salary'] <= sal_var3[1]]
|
147 |
+
final_pp_combos = final_pp_combos.drop_duplicates(subset=['Player'])
|
148 |
+
final_pp_combos = final_pp_combos.sort_values(by='Median', ascending=False)
|
149 |
+
st.dataframe(final_pp_combos.iloc[:, :-3].style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
|
150 |
+
st.download_button(
|
151 |
+
label="Export Tables",
|
152 |
+
data=convert_df_to_csv(final_pp_combos),
|
153 |
+
file_name='NHL_powerplay_export.csv',
|
154 |
+
mime='text/csv',
|
155 |
+
)
|
app.yaml
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
runtime: python
|
2 |
+
env: flex
|
3 |
+
|
4 |
+
runtime_config:
|
5 |
+
python_version: 3
|
6 |
+
|
7 |
+
entrypoint: streamlit run streamlit-app.py --server.port $PORT
|
8 |
+
|
9 |
+
automatic_scaling:
|
10 |
+
max_num_instances: 200
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
gspread
|
3 |
+
openpyxl
|
4 |
+
matplotlib
|
5 |
+
streamlit-aggrid
|
6 |
+
pulp
|
7 |
+
docker
|
8 |
+
plotly
|
9 |
+
scipy
|
10 |
+
pymongo
|