File size: 6,245 Bytes
488d025
d55a6ac
 
cdd78db
 
 
 
 
 
d55a6ac
 
 
 
 
 
 
488d025
 
a663e78
488d025
 
135593c
488d025
 
 
 
 
 
a663e78
 
 
a0b921f
a663e78
 
 
 
 
 
 
 
 
 
 
 
 
 
a0b921f
 
 
9fa1f1e
a0b921f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fa1f1e
 
ea5770c
9fa1f1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea5770c
 
da8f43a
ea5770c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da8f43a
 
 
26c73e8
da8f43a
 
 
 
a3ac2b0
 
da8f43a
 
a3ac2b0
 
da8f43a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26c73e8
 
 
 
c0cf0b0
f16d74c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
'''from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
import gradio as grad
import ast

#mdl_name = "deepset/roberta-base-squad2"
#my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name)

mdl_name = "distilbert-base-cased-distilled-squad"
my_pipeline = pipeline('question-answering', model=mdl_name,tokenizer=mdl_name)

def answer_question(question,context):
    text= "{"+"'question': '"+question+"','context': '"+context+"'}"
    
    di=ast.literal_eval(text)
    response = my_pipeline(di)
    return response
grad.Interface(answer_question, inputs=["text","text"], outputs="text").launch()
'''
''' 
from transformers import pipeline
import gradio as grad
mdl_name = "VietAI/envit5-translation"
opus_translator = pipeline("translation", model=mdl_name)

def translate(text):
    
    response = opus_translator(text)
    return response
grad.Interface(translate, inputs=["text",], outputs="text").launch()
'''

'''5.11

from transformers import GPT2LMHeadModel,GPT2Tokenizer
import gradio as grad

mdl = GPT2LMHeadModel.from_pretrained('gpt2')
gpt2_tkn=GPT2Tokenizer.from_pretrained('gpt2')

def generate(starting_text):
    tkn_ids = gpt2_tkn.encode(starting_text, return_tensors = 'pt')
    gpt2_tensors = mdl.generate(tkn_ids)
    response = gpt2_tensors
    return response
txt=grad.Textbox(lines=1, label="English", placeholder="English Text here")
out=grad.Textbox(lines=1, label="Generated Tensors")
grad.Interface(generate, inputs=txt, outputs=out).launch()
'''

'''5.12
from transformers import GPT2LMHeadModel,GPT2Tokenizer
import gradio as grad

mdl = GPT2LMHeadModel.from_pretrained('gpt2')
gpt2_tkn=GPT2Tokenizer.from_pretrained('gpt2')


def generate(starting_text):
    tkn_ids = gpt2_tkn.encode(starting_text, return_tensors = 'pt')
    gpt2_tensors = mdl.generate(tkn_ids)
    response=""
    #response = gpt2_tensors
    for i, x in enumerate(gpt2_tensors):
       response=response+f"{i}: {gpt2_tkn.decode(x, skip_special_tokens=True)}"
    return response

txt=grad.Textbox(lines=1, label="English", placeholder="English Text here")
out=grad.Textbox(lines=1, label="Generated Tensors")
grad.Interface(generate, inputs=txt, outputs=out).launch()
'''

'''5.20
from transformers import AutoModelWithLMHead, AutoTokenizer
import gradio as grad

text2text_tkn = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")
mdl = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")

def text2text(context,answer):
    input_text = "answer: %s  context: %s </s>" % (answer, context)
    features = text2text_tkn ([input_text], return_tensors='pt')

    output = mdl.generate(input_ids=features['input_ids'], 
               attention_mask=features['attention_mask'],
               max_length=64)

    response=text2text_tkn.decode(output[0])    
    return response

context=grad.Textbox(lines=10, label="English", placeholder="Context")
ans=grad.Textbox(lines=1, label="Answer")
out=grad.Textbox(lines=1, label="Genereated Question")
grad.Interface(text2text, inputs=[context,ans], outputs=out).launch()
'''

'''5.21
from transformers import AutoTokenizer, AutoModelWithLMHead
import gradio as grad
text2text_tkn = AutoTokenizer.from_pretrained("deep-learning-analytics/wikihow-t5-small")
mdl = AutoModelWithLMHead.from_pretrained("deep-learning-analytics/wikihow-t5-small")


def text2text_summary(para):
    initial_txt = para.strip().replace("\n","")
    tkn_text = text2text_tkn.encode(initial_txt, return_tensors="pt")

    tkn_ids = mdl.generate(
            tkn_text,
            max_length=250, 
            num_beams=5,
            repetition_penalty=2.5, 
           
            early_stopping=True
        )

    response = text2text_tkn.decode(tkn_ids[0], skip_special_tokens=True)
    return response

para=grad.Textbox(lines=10, label="Paragraph", placeholder="Copy paragraph")
out=grad.Textbox(lines=1, label="Summary")
grad.Interface(text2text_summary, inputs=para, outputs=out).launch()
'''

'''5.28
from transformers import AutoModelForCausalLM, AutoTokenizer,BlenderbotForConditionalGeneration
import torch


chat_tkn = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
mdl = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")


#chat_tkn = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
#mdl = BlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")

def converse(user_input, chat_history=[]):
    
    user_input_ids = chat_tkn(user_input + chat_tkn.eos_token, return_tensors='pt').input_ids

    # keep history in the tensor
    bot_input_ids = torch.cat([torch.LongTensor(chat_history), user_input_ids], dim=-1)

    # get response 
    chat_history = mdl.generate(bot_input_ids, max_length=1000, pad_token_id=chat_tkn.eos_token_id).tolist()
    print (chat_history)

    
    response = chat_tkn.decode(chat_history[0]).split("<|endoftext|>")
    
    print("starting to print response")
    print(response)
    
    # html for display
    html = "<div class='mybot'>"
    for x, mesg in enumerate(response):
        if x%2!=0 :
           mesg="Alicia:"+mesg
           clazz="alicia"
        else :
           clazz="user"
        
        
        print("value of x")
        print(x)
        print("message")
        print (mesg)
        
        html += "<div class='mesg {}'> {}</div>".format(clazz, mesg)
    html += "</div>"
    print(html)
    return html, chat_history

import gradio as grad

css = """
.mychat {display:flex;flex-direction:column}
.mesg {padding:5px;margin-bottom:5px;border-radius:5px;width:75%}
.mesg.user {background-color:lightblue;color:white}
.mesg.alicia {background-color:orange;color:white,align-self:self-end}
.footer {display:none !important}
"""
text=grad.inputs.Textbox(placeholder="Lets chat")
grad.Interface(fn=converse,
             theme="default",
             inputs=[text, "state"],
             outputs=["html", "state"],
             css=css).launch()
'''

from datasets import list_datasets
all_datasets = huggingface_hub.list_datasets()
print(f"There are {len(all_datasets)} datasets currently available on the Hub") 
print(f"The first 10 are: {all_datasets[:10]}")