Spaces:
Runtime error
Runtime error
File size: 6,245 Bytes
488d025 d55a6ac cdd78db d55a6ac 488d025 a663e78 488d025 135593c 488d025 a663e78 a0b921f a663e78 a0b921f 9fa1f1e a0b921f 9fa1f1e ea5770c 9fa1f1e ea5770c da8f43a ea5770c da8f43a 26c73e8 da8f43a a3ac2b0 da8f43a a3ac2b0 da8f43a 26c73e8 c0cf0b0 f16d74c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
'''from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
import gradio as grad
import ast
#mdl_name = "deepset/roberta-base-squad2"
#my_pipeline = pipeline('question-answering', model=mdl_name, tokenizer=mdl_name)
mdl_name = "distilbert-base-cased-distilled-squad"
my_pipeline = pipeline('question-answering', model=mdl_name,tokenizer=mdl_name)
def answer_question(question,context):
text= "{"+"'question': '"+question+"','context': '"+context+"'}"
di=ast.literal_eval(text)
response = my_pipeline(di)
return response
grad.Interface(answer_question, inputs=["text","text"], outputs="text").launch()
'''
'''
from transformers import pipeline
import gradio as grad
mdl_name = "VietAI/envit5-translation"
opus_translator = pipeline("translation", model=mdl_name)
def translate(text):
response = opus_translator(text)
return response
grad.Interface(translate, inputs=["text",], outputs="text").launch()
'''
'''5.11
from transformers import GPT2LMHeadModel,GPT2Tokenizer
import gradio as grad
mdl = GPT2LMHeadModel.from_pretrained('gpt2')
gpt2_tkn=GPT2Tokenizer.from_pretrained('gpt2')
def generate(starting_text):
tkn_ids = gpt2_tkn.encode(starting_text, return_tensors = 'pt')
gpt2_tensors = mdl.generate(tkn_ids)
response = gpt2_tensors
return response
txt=grad.Textbox(lines=1, label="English", placeholder="English Text here")
out=grad.Textbox(lines=1, label="Generated Tensors")
grad.Interface(generate, inputs=txt, outputs=out).launch()
'''
'''5.12
from transformers import GPT2LMHeadModel,GPT2Tokenizer
import gradio as grad
mdl = GPT2LMHeadModel.from_pretrained('gpt2')
gpt2_tkn=GPT2Tokenizer.from_pretrained('gpt2')
def generate(starting_text):
tkn_ids = gpt2_tkn.encode(starting_text, return_tensors = 'pt')
gpt2_tensors = mdl.generate(tkn_ids)
response=""
#response = gpt2_tensors
for i, x in enumerate(gpt2_tensors):
response=response+f"{i}: {gpt2_tkn.decode(x, skip_special_tokens=True)}"
return response
txt=grad.Textbox(lines=1, label="English", placeholder="English Text here")
out=grad.Textbox(lines=1, label="Generated Tensors")
grad.Interface(generate, inputs=txt, outputs=out).launch()
'''
'''5.20
from transformers import AutoModelWithLMHead, AutoTokenizer
import gradio as grad
text2text_tkn = AutoTokenizer.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")
mdl = AutoModelWithLMHead.from_pretrained("mrm8488/t5-base-finetuned-question-generation-ap")
def text2text(context,answer):
input_text = "answer: %s context: %s </s>" % (answer, context)
features = text2text_tkn ([input_text], return_tensors='pt')
output = mdl.generate(input_ids=features['input_ids'],
attention_mask=features['attention_mask'],
max_length=64)
response=text2text_tkn.decode(output[0])
return response
context=grad.Textbox(lines=10, label="English", placeholder="Context")
ans=grad.Textbox(lines=1, label="Answer")
out=grad.Textbox(lines=1, label="Genereated Question")
grad.Interface(text2text, inputs=[context,ans], outputs=out).launch()
'''
'''5.21
from transformers import AutoTokenizer, AutoModelWithLMHead
import gradio as grad
text2text_tkn = AutoTokenizer.from_pretrained("deep-learning-analytics/wikihow-t5-small")
mdl = AutoModelWithLMHead.from_pretrained("deep-learning-analytics/wikihow-t5-small")
def text2text_summary(para):
initial_txt = para.strip().replace("\n","")
tkn_text = text2text_tkn.encode(initial_txt, return_tensors="pt")
tkn_ids = mdl.generate(
tkn_text,
max_length=250,
num_beams=5,
repetition_penalty=2.5,
early_stopping=True
)
response = text2text_tkn.decode(tkn_ids[0], skip_special_tokens=True)
return response
para=grad.Textbox(lines=10, label="Paragraph", placeholder="Copy paragraph")
out=grad.Textbox(lines=1, label="Summary")
grad.Interface(text2text_summary, inputs=para, outputs=out).launch()
'''
'''5.28
from transformers import AutoModelForCausalLM, AutoTokenizer,BlenderbotForConditionalGeneration
import torch
chat_tkn = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
mdl = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
#chat_tkn = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill")
#mdl = BlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-400M-distill")
def converse(user_input, chat_history=[]):
user_input_ids = chat_tkn(user_input + chat_tkn.eos_token, return_tensors='pt').input_ids
# keep history in the tensor
bot_input_ids = torch.cat([torch.LongTensor(chat_history), user_input_ids], dim=-1)
# get response
chat_history = mdl.generate(bot_input_ids, max_length=1000, pad_token_id=chat_tkn.eos_token_id).tolist()
print (chat_history)
response = chat_tkn.decode(chat_history[0]).split("<|endoftext|>")
print("starting to print response")
print(response)
# html for display
html = "<div class='mybot'>"
for x, mesg in enumerate(response):
if x%2!=0 :
mesg="Alicia:"+mesg
clazz="alicia"
else :
clazz="user"
print("value of x")
print(x)
print("message")
print (mesg)
html += "<div class='mesg {}'> {}</div>".format(clazz, mesg)
html += "</div>"
print(html)
return html, chat_history
import gradio as grad
css = """
.mychat {display:flex;flex-direction:column}
.mesg {padding:5px;margin-bottom:5px;border-radius:5px;width:75%}
.mesg.user {background-color:lightblue;color:white}
.mesg.alicia {background-color:orange;color:white,align-self:self-end}
.footer {display:none !important}
"""
text=grad.inputs.Textbox(placeholder="Lets chat")
grad.Interface(fn=converse,
theme="default",
inputs=[text, "state"],
outputs=["html", "state"],
css=css).launch()
'''
from datasets import list_datasets
all_datasets = huggingface_hub.list_datasets()
print(f"There are {len(all_datasets)} datasets currently available on the Hub")
print(f"The first 10 are: {all_datasets[:10]}") |