Spaces:
Runtime error
Runtime error
Commit
·
f13cdf6
1
Parent(s):
8f3c6f4
Delete GAN.py
Browse files
GAN.py
DELETED
@@ -1,870 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
# In[1]:
|
5 |
-
|
6 |
-
|
7 |
-
import numpy as np
|
8 |
-
import pandas as pd
|
9 |
-
import matplotlib.pyplot as plt
|
10 |
-
import seaborn as sns
|
11 |
-
import os
|
12 |
-
import pickle
|
13 |
-
import time
|
14 |
-
import random
|
15 |
-
|
16 |
-
|
17 |
-
# In[8]:
|
18 |
-
|
19 |
-
|
20 |
-
import PIL
|
21 |
-
from PIL import Image
|
22 |
-
import keras.backend as K
|
23 |
-
import tensorflow as tf
|
24 |
-
from tensorflow import keras
|
25 |
-
from keras.optimizers import Adam
|
26 |
-
from keras.models import Sequential
|
27 |
-
from keras import layers,Model,Input
|
28 |
-
from keras.layers import Lambda,Reshape,UpSampling2D,ReLU,add,ZeroPadding2D
|
29 |
-
from keras.layers import Activation,BatchNormalization,Concatenate,concatenate
|
30 |
-
from keras.layers import Dense,Conv2D,Flatten,Dropout,LeakyReLU
|
31 |
-
from keras.preprocessing.image import ImageDataGenerator
|
32 |
-
|
33 |
-
|
34 |
-
# ### Conditioning Augmentation Network
|
35 |
-
|
36 |
-
# In[3]:
|
37 |
-
|
38 |
-
|
39 |
-
# conditioned by the text.
|
40 |
-
def conditioning_augmentation(x):
|
41 |
-
"""The mean_logsigma passed as argument is converted into the text conditioning variable.
|
42 |
-
|
43 |
-
Args:
|
44 |
-
x: The output of the text embedding passed through a FC layer with LeakyReLU non-linearity.
|
45 |
-
|
46 |
-
Returns:
|
47 |
-
c: The text conditioning variable after computation.
|
48 |
-
"""
|
49 |
-
mean = x[:, :128]
|
50 |
-
log_sigma = x[:, 128:]
|
51 |
-
|
52 |
-
stddev = tf.math.exp(log_sigma)
|
53 |
-
epsilon = K.random_normal(shape=K.constant((mean.shape[1], ), dtype='int32'))
|
54 |
-
c = mean + stddev * epsilon
|
55 |
-
return c
|
56 |
-
|
57 |
-
def build_ca_network():
|
58 |
-
"""Builds the conditioning augmentation network.
|
59 |
-
"""
|
60 |
-
input_layer1 = Input(shape=(1024,)) #size of the vocabulary in the text data
|
61 |
-
mls = Dense(256)(input_layer1)
|
62 |
-
mls = LeakyReLU(alpha=0.2)(mls)
|
63 |
-
ca = Lambda(conditioning_augmentation)(mls)
|
64 |
-
return Model(inputs=[input_layer1], outputs=[ca])
|
65 |
-
|
66 |
-
|
67 |
-
# ### Stage 1 Generator Network
|
68 |
-
|
69 |
-
# In[4]:
|
70 |
-
|
71 |
-
|
72 |
-
def UpSamplingBlock(x, num_kernels):
|
73 |
-
"""An Upsample block with Upsampling2D, Conv2D, BatchNormalization and a ReLU activation.
|
74 |
-
|
75 |
-
Args:
|
76 |
-
x: The preceding layer as input.
|
77 |
-
num_kernels: Number of kernels for the Conv2D layer.
|
78 |
-
|
79 |
-
Returns:
|
80 |
-
x: The final activation layer after the Upsampling block.
|
81 |
-
"""
|
82 |
-
x = UpSampling2D(size=(2,2))(x)
|
83 |
-
x = Conv2D(num_kernels, kernel_size=(3,3), padding='same', strides=1, use_bias=False,
|
84 |
-
kernel_initializer='he_uniform')(x)
|
85 |
-
x = BatchNormalization(gamma_initializer='ones', beta_initializer='zeros')(x) #prevent from mode collapse
|
86 |
-
x = ReLU()(x)
|
87 |
-
return x
|
88 |
-
|
89 |
-
|
90 |
-
def build_stage1_generator():
|
91 |
-
|
92 |
-
input_layer1 = Input(shape=(1024,))
|
93 |
-
ca = Dense(256)(input_layer1)
|
94 |
-
ca = LeakyReLU(alpha=0.2)(ca)
|
95 |
-
|
96 |
-
# Obtain the conditioned text
|
97 |
-
c = Lambda(conditioning_augmentation)(ca)
|
98 |
-
|
99 |
-
input_layer2 = Input(shape=(100,))
|
100 |
-
concat = Concatenate(axis=1)([c, input_layer2])
|
101 |
-
|
102 |
-
x = Dense(16384, use_bias=False)(concat)
|
103 |
-
x = ReLU()(x)
|
104 |
-
x = Reshape((4, 4, 1024), input_shape=(16384,))(x)
|
105 |
-
|
106 |
-
x = UpSamplingBlock(x, 512)
|
107 |
-
x = UpSamplingBlock(x, 256)
|
108 |
-
x = UpSamplingBlock(x, 128)
|
109 |
-
x = UpSamplingBlock(x, 64) # upsampled our image to 64*64*3
|
110 |
-
|
111 |
-
x = Conv2D(3, kernel_size=3, padding='same', strides=1, use_bias=False,
|
112 |
-
kernel_initializer='he_uniform')(x)
|
113 |
-
x = Activation('tanh')(x)
|
114 |
-
|
115 |
-
stage1_gen = Model(inputs=[input_layer1, input_layer2], outputs=[x, ca])
|
116 |
-
return stage1_gen
|
117 |
-
|
118 |
-
|
119 |
-
# In[5]:
|
120 |
-
|
121 |
-
|
122 |
-
generator = build_stage1_generator()
|
123 |
-
generator.summary()
|
124 |
-
|
125 |
-
|
126 |
-
# ### Stage 1 Discriminator Network
|
127 |
-
|
128 |
-
# In[9]:
|
129 |
-
|
130 |
-
|
131 |
-
def ConvBlock(x, num_kernels, kernel_size=(4,4), strides=2, activation=True):
|
132 |
-
"""A ConvBlock with a Conv2D, BatchNormalization and LeakyReLU activation.
|
133 |
-
|
134 |
-
Args:
|
135 |
-
x: The preceding layer as input.
|
136 |
-
num_kernels: Number of kernels for the Conv2D layer.
|
137 |
-
|
138 |
-
Returns:
|
139 |
-
x: The final activation layer after the ConvBlock block.
|
140 |
-
"""
|
141 |
-
x = Conv2D(num_kernels, kernel_size=kernel_size, padding='same', strides=strides, use_bias=False,
|
142 |
-
kernel_initializer='he_uniform')(x)
|
143 |
-
x = BatchNormalization(gamma_initializer='ones', beta_initializer='zeros')(x)
|
144 |
-
|
145 |
-
if activation:
|
146 |
-
x = LeakyReLU(alpha=0.2)(x)
|
147 |
-
return x
|
148 |
-
|
149 |
-
|
150 |
-
def build_embedding_compressor():
|
151 |
-
"""Build embedding compressor model
|
152 |
-
"""
|
153 |
-
input_layer1 = Input(shape=(1024,))
|
154 |
-
x = Dense(128)(input_layer1)
|
155 |
-
x = ReLU()(x)
|
156 |
-
|
157 |
-
model = Model(inputs=[input_layer1], outputs=[x])
|
158 |
-
return model
|
159 |
-
|
160 |
-
# the discriminator is fed with two inputs, the feature from Generator and the text embedding
|
161 |
-
def build_stage1_discriminator():
|
162 |
-
"""Builds the Stage 1 Discriminator that uses the 64x64 resolution images from the generator
|
163 |
-
and the compressed and spatially replicated embedding.
|
164 |
-
|
165 |
-
Returns:
|
166 |
-
Stage 1 Discriminator Model for StackGAN.
|
167 |
-
"""
|
168 |
-
input_layer1 = Input(shape=(64, 64, 3))
|
169 |
-
|
170 |
-
x = Conv2D(64, kernel_size=(4,4), strides=2, padding='same', use_bias=False,
|
171 |
-
kernel_initializer='he_uniform')(input_layer1)
|
172 |
-
x = LeakyReLU(alpha=0.2)(x)
|
173 |
-
|
174 |
-
x = ConvBlock(x, 128)
|
175 |
-
x = ConvBlock(x, 256)
|
176 |
-
x = ConvBlock(x, 512)
|
177 |
-
|
178 |
-
# Obtain the compressed and spatially replicated text embedding
|
179 |
-
input_layer2 = Input(shape=(4, 4, 128)) #2nd input to discriminator, text embedding
|
180 |
-
concat = concatenate([x, input_layer2])
|
181 |
-
|
182 |
-
x1 = Conv2D(512, kernel_size=(1,1), padding='same', strides=1, use_bias=False,
|
183 |
-
kernel_initializer='he_uniform')(concat)
|
184 |
-
x1 = BatchNormalization(gamma_initializer='ones', beta_initializer='zeros')(x)
|
185 |
-
x1 = LeakyReLU(alpha=0.2)(x)
|
186 |
-
|
187 |
-
# Flatten and add a FC layer to predict.
|
188 |
-
x1 = Flatten()(x1)
|
189 |
-
x1 = Dense(1)(x1)
|
190 |
-
x1 = Activation('sigmoid')(x1)
|
191 |
-
|
192 |
-
stage1_dis = Model(inputs=[input_layer1, input_layer2], outputs=[x1])
|
193 |
-
return stage1_dis
|
194 |
-
|
195 |
-
|
196 |
-
# In[10]:
|
197 |
-
|
198 |
-
|
199 |
-
discriminator = build_stage1_discriminator()
|
200 |
-
discriminator.summary()
|
201 |
-
|
202 |
-
|
203 |
-
# ### Stage 1 Adversarial Model (Building a GAN)
|
204 |
-
|
205 |
-
# In[11]:
|
206 |
-
|
207 |
-
|
208 |
-
# Building GAN with Generator and Discriminator
|
209 |
-
|
210 |
-
def build_adversarial(generator_model, discriminator_model):
|
211 |
-
"""Stage 1 Adversarial model.
|
212 |
-
|
213 |
-
Args:
|
214 |
-
generator_model: Stage 1 Generator Model
|
215 |
-
discriminator_model: Stage 1 Discriminator Model
|
216 |
-
|
217 |
-
Returns:
|
218 |
-
Adversarial Model.
|
219 |
-
"""
|
220 |
-
input_layer1 = Input(shape=(1024,))
|
221 |
-
input_layer2 = Input(shape=(100,))
|
222 |
-
input_layer3 = Input(shape=(4, 4, 128))
|
223 |
-
|
224 |
-
x, ca = generator_model([input_layer1, input_layer2]) #text,noise
|
225 |
-
|
226 |
-
discriminator_model.trainable = False
|
227 |
-
|
228 |
-
probabilities = discriminator_model([x, input_layer3])
|
229 |
-
adversarial_model = Model(inputs=[input_layer1, input_layer2, input_layer3], outputs=[probabilities, ca])
|
230 |
-
return adversarial_model
|
231 |
-
|
232 |
-
|
233 |
-
# In[12]:
|
234 |
-
|
235 |
-
|
236 |
-
ganstage1 = build_adversarial(generator, discriminator)
|
237 |
-
ganstage1.summary()
|
238 |
-
|
239 |
-
|
240 |
-
# ### Train Utilities
|
241 |
-
|
242 |
-
# In[13]:
|
243 |
-
|
244 |
-
|
245 |
-
def checkpoint_prefix():
|
246 |
-
checkpoint_dir = './training_checkpoints'
|
247 |
-
checkpoint_prefix = os.path.join(checkpoint_dir, 'ckpt')
|
248 |
-
|
249 |
-
return checkpoint_prefix
|
250 |
-
|
251 |
-
def adversarial_loss(y_true, y_pred):
|
252 |
-
mean = y_pred[:, :128]
|
253 |
-
ls = y_pred[:, 128:]
|
254 |
-
loss = -ls + 0.5 * (-1 + tf.math.exp(2.0 * ls) + tf.math.square(mean))
|
255 |
-
loss = K.mean(loss)
|
256 |
-
return loss
|
257 |
-
|
258 |
-
def normalize(input_image, real_image):
|
259 |
-
input_image = (input_image / 127.5) - 1
|
260 |
-
real_image = (real_image / 127.5) - 1
|
261 |
-
|
262 |
-
return input_image, real_image
|
263 |
-
|
264 |
-
def load_class_ids_filenames(class_id_path, filename_path):
|
265 |
-
with open(class_id_path, 'rb') as file:
|
266 |
-
class_id = pickle.load(file, encoding='latin1')
|
267 |
-
|
268 |
-
with open(filename_path, 'rb') as file:
|
269 |
-
filename = pickle.load(file, encoding='latin1')
|
270 |
-
|
271 |
-
return class_id, filename
|
272 |
-
|
273 |
-
def load_text_embeddings(text_embeddings):
|
274 |
-
with open(text_embeddings, 'rb') as file:
|
275 |
-
embeds = pickle.load(file, encoding='latin1')
|
276 |
-
embeds = np.array(embeds)
|
277 |
-
|
278 |
-
return embeds
|
279 |
-
|
280 |
-
def load_bbox(data_path):
|
281 |
-
bbox_path = data_path + '/bounding_boxes.txt'
|
282 |
-
image_path = data_path + '/images.txt'
|
283 |
-
bbox_df = pd.read_csv(bbox_path, delim_whitespace=True, header=None).astype(int)
|
284 |
-
filename_df = pd.read_csv(image_path, delim_whitespace=True, header=None)
|
285 |
-
|
286 |
-
filenames = filename_df[1].tolist()
|
287 |
-
bbox_dict = {i[:-4]:[] for i in filenames[:2]}
|
288 |
-
|
289 |
-
for i in range(0, len(filenames)):
|
290 |
-
bbox = bbox_df.iloc[i][1:].tolist()
|
291 |
-
dict_key = filenames[i][:-4]
|
292 |
-
bbox_dict[dict_key] = bbox
|
293 |
-
|
294 |
-
return bbox_dict
|
295 |
-
|
296 |
-
def load_images(image_path, bounding_box, size):
|
297 |
-
"""Crops the image to the bounding box and then resizes it.
|
298 |
-
"""
|
299 |
-
image = Image.open(image_path).convert('RGB')
|
300 |
-
w, h = image.size
|
301 |
-
if bounding_box is not None:
|
302 |
-
r = int(np.maximum(bounding_box[2], bounding_box[3]) * 0.75)
|
303 |
-
c_x = int((bounding_box[0] + bounding_box[2]) / 2)
|
304 |
-
c_y = int((bounding_box[1] + bounding_box[3]) / 2)
|
305 |
-
y1 = np.maximum(0, c_y - r)
|
306 |
-
y2 = np.minimum(h, c_y + r)
|
307 |
-
x1 = np.maximum(0, c_x - r)
|
308 |
-
x2 = np.minimum(w, c_x + r)
|
309 |
-
image = image.crop([x1, y1, x2, y2])
|
310 |
-
|
311 |
-
image = image.resize(size, PIL.Image.BILINEAR)
|
312 |
-
return image
|
313 |
-
|
314 |
-
def load_data(filename_path, class_id_path, dataset_path, embeddings_path, size):
|
315 |
-
"""Loads the Dataset.
|
316 |
-
"""
|
317 |
-
data_dir = "D:/1-pipelined_topics/GAN_texttoimage/birds_implementation/birds"
|
318 |
-
train_dir = data_dir + "/train"
|
319 |
-
test_dir = data_dir + "/test"
|
320 |
-
embeddings_path_train = train_dir + "/char-CNN-RNN-embeddings.pickle"
|
321 |
-
embeddings_path_test = test_dir + "/char-CNN-RNN-embeddings.pickle"
|
322 |
-
filename_path_train = train_dir + "/filenames.pickle"
|
323 |
-
filename_path_test = test_dir + "/filenames.pickle"
|
324 |
-
class_id_path_train = train_dir + "/class_info.pickle"
|
325 |
-
class_id_path_test = test_dir + "/class_info.pickle"
|
326 |
-
dataset_path = "D:/1-pipelined_topics/GAN_texttoimage/birds_implementation/CUB_200_2011"
|
327 |
-
class_id, filenames = load_class_ids_filenames(class_id_path, filename_path)
|
328 |
-
embeddings = load_text_embeddings(embeddings_path)
|
329 |
-
bbox_dict = load_bbox(dataset_path)
|
330 |
-
|
331 |
-
x, y, embeds = [], [], []
|
332 |
-
|
333 |
-
for i, filename in enumerate(filenames):
|
334 |
-
bbox = bbox_dict[filename]
|
335 |
-
|
336 |
-
try:
|
337 |
-
image_path = f'{dataset_path}/images/{filename}.jpg'
|
338 |
-
image = load_images(image_path, bbox, size)
|
339 |
-
e = embeddings[i, :, :]
|
340 |
-
embed_index = np.random.randint(0, e.shape[0] - 1)
|
341 |
-
embed = e[embed_index, :]
|
342 |
-
|
343 |
-
x.append(np.array(image))
|
344 |
-
y.append(class_id[i])
|
345 |
-
embeds.append(embed)
|
346 |
-
|
347 |
-
except Exception as e:
|
348 |
-
print(f'{e}')
|
349 |
-
|
350 |
-
x = np.array(x)
|
351 |
-
y = np.array(y)
|
352 |
-
embeds = np.array(embeds)
|
353 |
-
|
354 |
-
return x, y, embeds
|
355 |
-
|
356 |
-
def save_image(file, save_path):
|
357 |
-
"""Saves the image at the specified file path.
|
358 |
-
"""
|
359 |
-
image = plt.figure()
|
360 |
-
ax = image.add_subplot(1,1,1)
|
361 |
-
ax.imshow(file)
|
362 |
-
ax.axis("off")
|
363 |
-
plt.savefig(save_path)
|
364 |
-
|
365 |
-
|
366 |
-
# In[28]:
|
367 |
-
|
368 |
-
|
369 |
-
############################################################
|
370 |
-
# StackGAN class
|
371 |
-
############################################################
|
372 |
-
|
373 |
-
class StackGanStage1(object):
|
374 |
-
"""StackGAN Stage 1 class."""
|
375 |
-
|
376 |
-
data_dir = "D:/1-pipelined_topics/GAN_texttoimage/birds_implementation/birds"
|
377 |
-
train_dir = data_dir + "/train"
|
378 |
-
test_dir = data_dir + "/test"
|
379 |
-
embeddings_path_train = train_dir + "/char-CNN-RNN-embeddings.pickle"
|
380 |
-
embeddings_path_test = test_dir + "/char-CNN-RNN-embeddings.pickle"
|
381 |
-
filename_path_train = train_dir + "/filenames.pickle"
|
382 |
-
filename_path_test = test_dir + "/filenames.pickle"
|
383 |
-
class_id_path_train = train_dir + "/class_info.pickle"
|
384 |
-
class_id_path_test = test_dir + "/class_info.pickle"
|
385 |
-
dataset_path = "D:/1-pipelined_topics/GAN_texttoimage/birds_implementation/CUB_200_2011"
|
386 |
-
def __init__(self, epochs=500, z_dim=100, batch_size=64, enable_function=True, stage1_generator_lr=0.0002, stage1_discriminator_lr=0.0002):
|
387 |
-
self.epochs = epochs
|
388 |
-
self.z_dim = z_dim
|
389 |
-
self.enable_function = enable_function
|
390 |
-
self.stage1_generator_lr = stage1_generator_lr
|
391 |
-
self.stage1_discriminator_lr = stage1_discriminator_lr
|
392 |
-
self.image_size = 64
|
393 |
-
self.conditioning_dim = 128
|
394 |
-
self.batch_size = batch_size
|
395 |
-
|
396 |
-
self.stage1_generator_optimizer = Adam(lr=stage1_generator_lr, beta_1=0.5, beta_2=0.999)
|
397 |
-
self.stage1_discriminator_optimizer = Adam(lr=stage1_discriminator_lr, beta_1=0.5, beta_2=0.999)
|
398 |
-
|
399 |
-
self.stage1_generator = build_stage1_generator()
|
400 |
-
self.stage1_generator.compile(loss='mse', optimizer=self.stage1_generator_optimizer)
|
401 |
-
|
402 |
-
self.stage1_discriminator = build_stage1_discriminator()
|
403 |
-
self.stage1_discriminator.compile(loss='binary_crossentropy', optimizer=self.stage1_discriminator_optimizer)
|
404 |
-
|
405 |
-
self.ca_network = build_ca_network()
|
406 |
-
self.ca_network.compile(loss='binary_crossentropy', optimizer='Adam')
|
407 |
-
|
408 |
-
self.embedding_compressor = build_embedding_compressor()
|
409 |
-
self.embedding_compressor.compile(loss='binary_crossentropy', optimizer='Adam')
|
410 |
-
|
411 |
-
self.stage1_adversarial = build_adversarial(self.stage1_generator, self.stage1_discriminator)
|
412 |
-
self.stage1_adversarial.compile(loss=['binary_crossentropy', adversarial_loss], loss_weights=[1, 2.0], optimizer=self.stage1_generator_optimizer)
|
413 |
-
|
414 |
-
self.checkpoint1 = tf.train.Checkpoint(
|
415 |
-
generator_optimizer=self.stage1_generator_optimizer,
|
416 |
-
discriminator_optimizer=self.stage1_discriminator_optimizer,
|
417 |
-
generator=self.stage1_generator,
|
418 |
-
discriminator=self.stage1_discriminator)
|
419 |
-
|
420 |
-
def visualize_stage1(self):
|
421 |
-
"""Running Tensorboard visualizations.
|
422 |
-
"""
|
423 |
-
tb = TensorBoard(log_dir="logs/".format(time.time()))
|
424 |
-
tb.set_model(self.stage1_generator)
|
425 |
-
tb.set_model(self.stage1_discriminator)
|
426 |
-
tb.set_model(self.ca_network)
|
427 |
-
tb.set_model(self.embedding_compressor)
|
428 |
-
|
429 |
-
def train_stage1(self):
|
430 |
-
"""Trains the stage1 StackGAN.
|
431 |
-
"""
|
432 |
-
x_train, y_train, train_embeds = load_data(filename_path=filename_path_train, class_id_path=class_id_path_train,
|
433 |
-
dataset_path=dataset_path, embeddings_path=embeddings_path_train, size=(64, 64))
|
434 |
-
|
435 |
-
x_test, y_test, test_embeds = load_data(filename_path=filename_path_test, class_id_path=class_id_path_test,
|
436 |
-
dataset_path=dataset_path, embeddings_path=embeddings_path_test, size=(64, 64))
|
437 |
-
|
438 |
-
real = np.ones((self.batch_size, 1), dtype='float') * 0.9
|
439 |
-
fake = np.zeros((self.batch_size, 1), dtype='float') * 0.1
|
440 |
-
|
441 |
-
for epoch in range(self.epochs):
|
442 |
-
print(f'Epoch: {epoch}')
|
443 |
-
|
444 |
-
gen_loss = []
|
445 |
-
dis_loss = []
|
446 |
-
|
447 |
-
num_batches = int(x_train.shape[0] / self.batch_size)
|
448 |
-
|
449 |
-
for i in range(num_batches):
|
450 |
-
|
451 |
-
latent_space = np.random.normal(0, 1, size=(self.batch_size, self.z_dim))
|
452 |
-
embedding_text = train_embeds[i * self.batch_size:(i + 1) * self.batch_size]
|
453 |
-
compressed_embedding = self.embedding_compressor.predict_on_batch(embedding_text)
|
454 |
-
compressed_embedding = np.reshape(compressed_embedding, (-1, 1, 1, 128))
|
455 |
-
compressed_embedding = np.tile(compressed_embedding, (1, 4, 4, 1))
|
456 |
-
|
457 |
-
image_batch = x_train[i * self.batch_size:(i+1) * self.batch_size]
|
458 |
-
image_batch = (image_batch - 127.5) / 127.5
|
459 |
-
|
460 |
-
gen_images, _ = self.stage1_generator.predict([embedding_text, latent_space])
|
461 |
-
|
462 |
-
discriminator_loss = self.stage1_discriminator.train_on_batch([image_batch, compressed_embedding],
|
463 |
-
np.reshape(real, (self.batch_size, 1)))
|
464 |
-
|
465 |
-
discriminator_loss_gen = self.stage1_discriminator.train_on_batch([gen_images, compressed_embedding],
|
466 |
-
np.reshape(fake, (self.batch_size, 1)))
|
467 |
-
|
468 |
-
discriminator_loss_wrong = self.stage1_discriminator.train_on_batch([gen_images[: self.batch_size-1], compressed_embedding[1:]],
|
469 |
-
np.reshape(fake[1:], (self.batch_size-1, 1)))
|
470 |
-
|
471 |
-
# Discriminator loss
|
472 |
-
d_loss = 0.5 * np.add(discriminator_loss, 0.5 * np.add(discriminator_loss_gen, discriminator_loss_wrong))
|
473 |
-
dis_loss.append(d_loss)
|
474 |
-
|
475 |
-
print(f'Discriminator Loss: {d_loss}')
|
476 |
-
|
477 |
-
# Generator loss
|
478 |
-
g_loss = self.stage1_adversarial.train_on_batch([embedding_text, latent_space, compressed_embedding],
|
479 |
-
[K.ones((self.batch_size, 1)) * 0.9, K.ones((self.batch_size, 256)) * 0.9])
|
480 |
-
|
481 |
-
print(f'Generator Loss: {g_loss}')
|
482 |
-
gen_loss.append(g_loss)
|
483 |
-
|
484 |
-
if epoch % 5 == 0:
|
485 |
-
latent_space = np.random.normal(0, 1, size=(self.batch_size, self.z_dim))
|
486 |
-
embedding_batch = test_embeds[0 : self.batch_size]
|
487 |
-
gen_images, _ = self.stage1_generator.predict_on_batch([embedding_batch, latent_space])
|
488 |
-
|
489 |
-
for i, image in enumerate(gen_images[:10]):
|
490 |
-
save_image(image, f'test/gen_1_{epoch}_{i}')
|
491 |
-
|
492 |
-
if epoch % 25 == 0:
|
493 |
-
self.stage1_generator.save_weights('weights/stage1_gen.h5')
|
494 |
-
self.stage1_discriminator.save_weights("weights/stage1_disc.h5")
|
495 |
-
self.ca_network.save_weights('weights/stage1_ca.h5')
|
496 |
-
self.embedding_compressor.save_weights('weights/stage1_embco.h5')
|
497 |
-
self.stage1_adversarial.save_weights('weights/stage1_adv.h5')
|
498 |
-
|
499 |
-
self.stage1_generator.save_weights('weights/stage1_gen.h5')
|
500 |
-
self.stage1_discriminator.save_weights("weights/stage1_disc.h5")
|
501 |
-
|
502 |
-
|
503 |
-
# In[ ]:
|
504 |
-
|
505 |
-
|
506 |
-
stage1 = StackGanStage1()
|
507 |
-
stage1.train_stage1()
|
508 |
-
|
509 |
-
|
510 |
-
# ### Check test folder for gernerated images from Stage1 Generator
|
511 |
-
# ### Let's Implement Stage 2 Generator
|
512 |
-
|
513 |
-
# In[29]:
|
514 |
-
|
515 |
-
|
516 |
-
############################################################
|
517 |
-
# Stage 2 Generator Network
|
518 |
-
############################################################
|
519 |
-
|
520 |
-
def concat_along_dims(inputs):
|
521 |
-
"""Joins the conditioned text with the encoded image along the dimensions.
|
522 |
-
|
523 |
-
Args:
|
524 |
-
inputs: consisting of conditioned text and encoded images as [c,x].
|
525 |
-
|
526 |
-
Returns:
|
527 |
-
Joint block along the dimensions.
|
528 |
-
"""
|
529 |
-
c = inputs[0]
|
530 |
-
x = inputs[1]
|
531 |
-
|
532 |
-
c = K.expand_dims(c, axis=1)
|
533 |
-
c = K.expand_dims(c, axis=1)
|
534 |
-
c = K.tile(c, [1, 16, 16, 1])
|
535 |
-
return K.concatenate([c, x], axis = 3)
|
536 |
-
|
537 |
-
def residual_block(input):
|
538 |
-
"""Residual block with plain identity connections.
|
539 |
-
|
540 |
-
Args:
|
541 |
-
inputs: input layer or an encoded layer
|
542 |
-
|
543 |
-
Returns:
|
544 |
-
Layer with computed identity mapping.
|
545 |
-
"""
|
546 |
-
x = Conv2D(512, kernel_size=(3,3), padding='same', use_bias=False,
|
547 |
-
kernel_initializer='he_uniform')(input)
|
548 |
-
x = BatchNormalization(gamma_initializer='ones', beta_initializer='zeros')(x)
|
549 |
-
x = ReLU()(x)
|
550 |
-
|
551 |
-
x = Conv2D(512, kernel_size=(3,3), padding='same', use_bias=False,
|
552 |
-
kernel_initializer='he_uniform')(x)
|
553 |
-
x = BatchNormalization(gamma_initializer='ones', beta_initializer='zeros')(x)
|
554 |
-
|
555 |
-
x = add([x, input])
|
556 |
-
x = ReLU()(x)
|
557 |
-
|
558 |
-
return x
|
559 |
-
|
560 |
-
def build_stage2_generator():
|
561 |
-
"""Build the Stage 2 Generator Network using the conditioning text and images from stage 1.
|
562 |
-
|
563 |
-
Returns:
|
564 |
-
Stage 2 Generator Model for StackGAN.
|
565 |
-
"""
|
566 |
-
input_layer1 = Input(shape=(1024,))
|
567 |
-
input_images = Input(shape=(64, 64, 3))
|
568 |
-
|
569 |
-
# Conditioning Augmentation
|
570 |
-
ca = Dense(256)(input_layer1)
|
571 |
-
mls = LeakyReLU(alpha=0.2)(ca)
|
572 |
-
c = Lambda(conditioning_augmentation)(mls)
|
573 |
-
|
574 |
-
# Downsampling block
|
575 |
-
x = ZeroPadding2D(padding=(1,1))(input_images)
|
576 |
-
x = Conv2D(128, kernel_size=(3,3), strides=1, use_bias=False,
|
577 |
-
kernel_initializer='he_uniform')(x)
|
578 |
-
x = ReLU()(x)
|
579 |
-
|
580 |
-
x = ZeroPadding2D(padding=(1,1))(x)
|
581 |
-
x = Conv2D(256, kernel_size=(4,4), strides=2, use_bias=False,
|
582 |
-
kernel_initializer='he_uniform')(x)
|
583 |
-
x = BatchNormalization(gamma_initializer='ones', beta_initializer='zeros')(x)
|
584 |
-
x = ReLU()(x)
|
585 |
-
|
586 |
-
x = ZeroPadding2D(padding=(1,1))(x)
|
587 |
-
x = Conv2D(512, kernel_size=(4,4), strides=2, use_bias=False,
|
588 |
-
kernel_initializer='he_uniform')(x)
|
589 |
-
x = BatchNormalization(gamma_initializer='ones', beta_initializer='zeros')(x)
|
590 |
-
x = ReLU()(x)
|
591 |
-
|
592 |
-
# Concatenate text conditioning block with the encoded image
|
593 |
-
concat = concat_along_dims([c, x])
|
594 |
-
|
595 |
-
# Residual Blocks
|
596 |
-
x = ZeroPadding2D(padding=(1,1))(concat)
|
597 |
-
x = Conv2D(512, kernel_size=(3,3), use_bias=False, kernel_initializer='he_uniform')(x)
|
598 |
-
x = BatchNormalization(gamma_initializer='ones', beta_initializer='zeros')(x)
|
599 |
-
x = ReLU()(x)
|
600 |
-
|
601 |
-
x = residual_block(x)
|
602 |
-
x = residual_block(x)
|
603 |
-
x = residual_block(x)
|
604 |
-
x = residual_block(x)
|
605 |
-
|
606 |
-
# Upsampling Blocks
|
607 |
-
x = UpSamplingBlock(x, 512)
|
608 |
-
x = UpSamplingBlock(x, 256)
|
609 |
-
x = UpSamplingBlock(x, 128)
|
610 |
-
x = UpSamplingBlock(x, 64)
|
611 |
-
|
612 |
-
x = Conv2D(3, kernel_size=(3,3), padding='same', use_bias=False, kernel_initializer='he_uniform')(x)
|
613 |
-
x = Activation('tanh')(x)
|
614 |
-
|
615 |
-
stage2_gen = Model(inputs=[input_layer1, input_images], outputs=[x, mls])
|
616 |
-
return stage2_gen
|
617 |
-
|
618 |
-
|
619 |
-
# In[30]:
|
620 |
-
|
621 |
-
|
622 |
-
generator_stage2 = build_stage2_generator()
|
623 |
-
generator_stage2.summary()
|
624 |
-
|
625 |
-
|
626 |
-
# In[31]:
|
627 |
-
|
628 |
-
|
629 |
-
############################################################
|
630 |
-
# Stage 2 Discriminator Network
|
631 |
-
############################################################
|
632 |
-
|
633 |
-
def build_stage2_discriminator():
|
634 |
-
"""Builds the Stage 2 Discriminator that uses the 256x256 resolution images from the generator
|
635 |
-
and the compressed and spatially replicated embeddings.
|
636 |
-
|
637 |
-
Returns:
|
638 |
-
Stage 2 Discriminator Model for StackGAN.
|
639 |
-
"""
|
640 |
-
input_layer1 = Input(shape=(256, 256, 3))
|
641 |
-
|
642 |
-
x = Conv2D(64, kernel_size=(4,4), padding='same', strides=2, use_bias=False,
|
643 |
-
kernel_initializer='he_uniform')(input_layer1)
|
644 |
-
x = LeakyReLU(alpha=0.2)(x)
|
645 |
-
|
646 |
-
x = ConvBlock(x, 128)
|
647 |
-
x = ConvBlock(x, 256)
|
648 |
-
x = ConvBlock(x, 512)
|
649 |
-
x = ConvBlock(x, 1024)
|
650 |
-
x = ConvBlock(x, 2048)
|
651 |
-
x = ConvBlock(x, 1024, (1,1), 1)
|
652 |
-
x = ConvBlock(x, 512, (1,1), 1, False)
|
653 |
-
|
654 |
-
x1 = ConvBlock(x, 128, (1,1), 1)
|
655 |
-
x1 = ConvBlock(x1, 128, (3,3), 1)
|
656 |
-
x1 = ConvBlock(x1, 512, (3,3), 1, False)
|
657 |
-
|
658 |
-
x2 = add([x, x1])
|
659 |
-
x2 = LeakyReLU(alpha=0.2)(x2)
|
660 |
-
|
661 |
-
# Concatenate compressed and spatially replicated embedding
|
662 |
-
input_layer2 = Input(shape=(4, 4, 128))
|
663 |
-
concat = concatenate([x2, input_layer2])
|
664 |
-
|
665 |
-
x3 = Conv2D(512, kernel_size=(1,1), strides=1, padding='same', kernel_initializer='he_uniform')(concat)
|
666 |
-
x3 = BatchNormalization(gamma_initializer='ones', beta_initializer='zeros')(x3)
|
667 |
-
x3 = LeakyReLU(alpha=0.2)(x3)
|
668 |
-
|
669 |
-
# Flatten and add a FC layer
|
670 |
-
x3 = Flatten()(x3)
|
671 |
-
x3 = Dense(1)(x3)
|
672 |
-
x3 = Activation('sigmoid')(x3)
|
673 |
-
|
674 |
-
stage2_dis = Model(inputs=[input_layer1, input_layer2], outputs=[x3])
|
675 |
-
return stage2_dis
|
676 |
-
|
677 |
-
|
678 |
-
# In[32]:
|
679 |
-
|
680 |
-
|
681 |
-
discriminator_stage2 = build_stage2_discriminator()
|
682 |
-
discriminator_stage2.summary()
|
683 |
-
|
684 |
-
|
685 |
-
# In[33]:
|
686 |
-
|
687 |
-
|
688 |
-
############################################################
|
689 |
-
# Stage 2 Adversarial Model
|
690 |
-
############################################################
|
691 |
-
|
692 |
-
def stage2_adversarial_network(stage2_disc, stage2_gen, stage1_gen):
|
693 |
-
"""Stage 2 Adversarial Network.
|
694 |
-
|
695 |
-
Args:
|
696 |
-
stage2_disc: Stage 2 Discriminator Model.
|
697 |
-
stage2_gen: Stage 2 Generator Model.
|
698 |
-
stage1_gen: Stage 1 Generator Model.
|
699 |
-
|
700 |
-
Returns:
|
701 |
-
Stage 2 Adversarial network.
|
702 |
-
"""
|
703 |
-
conditioned_embedding = Input(shape=(1024, ))
|
704 |
-
latent_space = Input(shape=(100, ))
|
705 |
-
compressed_replicated = Input(shape=(4, 4, 128))
|
706 |
-
|
707 |
-
#the discriminator is trained separately and stage1_gen already trained, and this is the reason why we freeze its layers by setting the property trainable=false
|
708 |
-
input_images, ca = stage1_gen([conditioned_embedding, latent_space])
|
709 |
-
stage2_disc.trainable = False
|
710 |
-
stage1_gen.trainable = False
|
711 |
-
|
712 |
-
images, ca2 = stage2_gen([conditioned_embedding, input_images])
|
713 |
-
probability = stage2_disc([images, compressed_replicated])
|
714 |
-
|
715 |
-
return Model(inputs=[conditioned_embedding, latent_space, compressed_replicated],
|
716 |
-
outputs=[probability, ca2])
|
717 |
-
|
718 |
-
|
719 |
-
# In[34]:
|
720 |
-
|
721 |
-
|
722 |
-
adversarial_stage2 = stage2_adversarial_network(discriminator_stage2, generator_stage2, generator)
|
723 |
-
adversarial_stage2.summary()
|
724 |
-
|
725 |
-
|
726 |
-
# In[35]:
|
727 |
-
|
728 |
-
|
729 |
-
class StackGanStage2(object):
|
730 |
-
"""StackGAN Stage 2 class.
|
731 |
-
|
732 |
-
Args:
|
733 |
-
epochs: Number of epochs
|
734 |
-
z_dim: Latent space dimensions
|
735 |
-
batch_size: Batch Size
|
736 |
-
enable_function: If True, training function is decorated with tf.function
|
737 |
-
stage2_generator_lr: Learning rate for stage 2 generator
|
738 |
-
stage2_discriminator_lr: Learning rate for stage 2 discriminator
|
739 |
-
"""
|
740 |
-
def __init__(self, epochs=500, z_dim=100, batch_size=64, enable_function=True, stage2_generator_lr=0.0002, stage2_discriminator_lr=0.0002):
|
741 |
-
self.epochs = epochs
|
742 |
-
self.z_dim = z_dim
|
743 |
-
self.enable_function = enable_function
|
744 |
-
self.stage1_generator_lr = stage2_generator_lr
|
745 |
-
self.stage1_discriminator_lr = stage2_discriminator_lr
|
746 |
-
self.low_image_size = 64
|
747 |
-
self.high_image_size = 256
|
748 |
-
self.conditioning_dim = 128
|
749 |
-
self.batch_size = batch_size
|
750 |
-
self.stage2_generator_optimizer = Adam(lr=stage2_generator_lr, beta_1=0.5, beta_2=0.999)
|
751 |
-
self.stage2_discriminator_optimizer = Adam(lr=stage2_discriminator_lr, beta_1=0.5, beta_2=0.999)
|
752 |
-
self.stage1_generator = build_stage1_generator()
|
753 |
-
self.stage1_generator.compile(loss='binary_crossentropy', optimizer=self.stage2_generator_optimizer)
|
754 |
-
self.stage1_generator.load_weights('weights/stage1_gen.h5')
|
755 |
-
self.stage2_generator = build_stage2_generator()
|
756 |
-
self.stage2_generator.compile(loss='binary_crossentropy', optimizer=self.stage2_generator_optimizer)
|
757 |
-
|
758 |
-
self.stage2_discriminator = build_stage2_discriminator()
|
759 |
-
self.stage2_discriminator.compile(loss='binary_crossentropy', optimizer=self.stage2_discriminator_optimizer)
|
760 |
-
|
761 |
-
self.ca_network = build_ca_network()
|
762 |
-
self.ca_network.compile(loss='binary_crossentropy', optimizer='Adam')
|
763 |
-
|
764 |
-
self.embedding_compressor = build_embedding_compressor()
|
765 |
-
self.embedding_compressor.compile(loss='binary_crossentropy', optimizer='Adam')
|
766 |
-
|
767 |
-
self.stage2_adversarial = stage2_adversarial_network(self.stage2_discriminator, self.stage2_generator, self.stage1_generator)
|
768 |
-
self.stage2_adversarial.compile(loss=['binary_crossentropy', adversarial_loss], loss_weights=[1, 2.0], optimizer=self.stage2_generator_optimizer)
|
769 |
-
|
770 |
-
self.checkpoint2 = tf.train.Checkpoint(
|
771 |
-
generator_optimizer=self.stage2_generator_optimizer,
|
772 |
-
discriminator_optimizer=self.stage2_discriminator_optimizer,
|
773 |
-
generator=self.stage2_generator,
|
774 |
-
discriminator=self.stage2_discriminator,
|
775 |
-
generator1=self.stage1_generator)
|
776 |
-
|
777 |
-
def visualize_stage2(self):
|
778 |
-
"""Running Tensorboard visualizations.
|
779 |
-
"""
|
780 |
-
tb = TensorBoard(log_dir="logs/".format(time.time()))
|
781 |
-
tb.set_model(self.stage2_generator)
|
782 |
-
tb.set_model(self.stage2_discriminator)
|
783 |
-
|
784 |
-
def train_stage2(self):
|
785 |
-
"""Trains Stage 2 StackGAN.
|
786 |
-
"""
|
787 |
-
x_high_train, y_high_train, high_train_embeds = load_data(filename_path=filename_path_train, class_id_path=class_id_path_train,
|
788 |
-
dataset_path=dataset_path, embeddings_path=embeddings_path_train, size=(256, 256))
|
789 |
-
|
790 |
-
x_high_test, y_high_test, high_test_embeds = load_data(filename_path=filename_path_test, class_id_path=class_id_path_test,
|
791 |
-
dataset_path=dataset_path, embeddings_path=embeddings_path_test, size=(256, 256))
|
792 |
-
|
793 |
-
x_low_train, y_low_train, low_train_embeds = load_data(filename_path=filename_path_train, class_id_path=class_id_path_train,
|
794 |
-
dataset_path=dataset_path, embeddings_path=embeddings_path_train, size=(64, 64))
|
795 |
-
|
796 |
-
x_low_test, y_low_test, low_test_embeds = load_data(filename_path=filename_path_test, class_id_path=class_id_path_test,
|
797 |
-
dataset_path=dataset_path, embeddings_path=embeddings_path_test, size=(64, 64))
|
798 |
-
|
799 |
-
real = np.ones((self.batch_size, 1), dtype='float') * 0.9
|
800 |
-
fake = np.zeros((self.batch_size, 1), dtype='float') * 0.1
|
801 |
-
|
802 |
-
for epoch in range(self.epochs):
|
803 |
-
print(f'Epoch: {epoch}')
|
804 |
-
|
805 |
-
gen_loss = []
|
806 |
-
disc_loss = []
|
807 |
-
|
808 |
-
num_batches = int(x_high_train.shape[0] / self.batch_size)
|
809 |
-
|
810 |
-
for i in range(num_batches):
|
811 |
-
|
812 |
-
latent_space = np.random.normal(0, 1, size=(self.batch_size, self.z_dim))
|
813 |
-
embedding_text = high_train_embeds[i * self.batch_size:(i + 1) * self.batch_size]
|
814 |
-
compressed_embedding = self.embedding_compressor.predict_on_batch(embedding_text)
|
815 |
-
compressed_embedding = np.reshape(compressed_embedding, (-1, 1, 1, self.conditioning_dim))
|
816 |
-
compressed_embedding = np.tile(compressed_embedding, (1, 4, 4, 1))
|
817 |
-
|
818 |
-
image_batch = x_high_train[i * self.batch_size:(i+1) * self.batch_size]
|
819 |
-
image_batch = (image_batch - 127.5) / 127.5
|
820 |
-
|
821 |
-
low_res_fakes, _ = self.stage1_generator.predict([embedding_text, latent_space], verbose=3)
|
822 |
-
high_res_fakes, _ = self.stage2_generator.predict([embedding_text, low_res_fakes], verbose=3)
|
823 |
-
|
824 |
-
discriminator_loss = self.stage2_discriminator.train_on_batch([image_batch, compressed_embedding],
|
825 |
-
np.reshape(real, (self.batch_size, 1)))
|
826 |
-
|
827 |
-
discriminator_loss_gen = self.stage2_discriminator.train_on_batch([high_res_fakes, compressed_embedding],
|
828 |
-
np.reshape(fake, (self.batch_size, 1)))
|
829 |
-
|
830 |
-
discriminator_loss_fake = self.stage2_discriminator.train_on_batch([image_batch[:(self.batch_size-1)], compressed_embedding[1:]],
|
831 |
-
np.reshape(fake[1:], (self.batch_size - 1, 1)))
|
832 |
-
|
833 |
-
d_loss = 0.5 * np.add(discriminator_loss, 0.5 * np.add(discriminator_loss_gen, discriminator_loss_fake))
|
834 |
-
disc_loss.append(d_loss)
|
835 |
-
|
836 |
-
print(f'Discriminator Loss: {d_loss}')
|
837 |
-
|
838 |
-
g_loss = self.stage2_adversarial.train_on_batch([embedding_text, latent_space, compressed_embedding],
|
839 |
-
[K.ones((self.batch_size, 1)) * 0.9, K.ones((self.batch_size, 256)) * 0.9])
|
840 |
-
gen_loss.append(g_loss)
|
841 |
-
|
842 |
-
print(f'Generator Loss: {g_loss}')
|
843 |
-
|
844 |
-
if epoch % 5 == 0:
|
845 |
-
latent_space = np.random.normal(0, 1, size=(self.batch_size, self.z_dim))
|
846 |
-
embedding_batch = high_test_embeds[0 : self.batch_size]
|
847 |
-
|
848 |
-
low_fake_images, _ = self.stage1_generator.predict([embedding_batch, latent_space], verbose=3)
|
849 |
-
high_fake_images, _ = self.stage2_generator.predict([embedding_batch, low_fake_images], verbose=3)
|
850 |
-
|
851 |
-
for i, image in enumerate(high_fake_images[:10]):
|
852 |
-
save_image(image, f'results_stage2/gen_{epoch}_{i}.png')
|
853 |
-
|
854 |
-
if epoch % 10 == 0:
|
855 |
-
self.stage2_generator.save_weights('weights/stage2_gen.h5')
|
856 |
-
self.stage2_discriminator.save_weights("weights/stage2_disc.h5")
|
857 |
-
self.ca_network.save_weights('weights/stage2_ca.h5')
|
858 |
-
self.embedding_compressor.save_weights('weights/stage2_embco.h5')
|
859 |
-
self.stage2_adversarial.save_weights('weights/stage2_adv.h5')
|
860 |
-
|
861 |
-
self.stage2_generator.save_weights('weights/stage2_gen.h5')
|
862 |
-
self.stage2_discriminator.save_weights("weights/stage2_disc.h5")
|
863 |
-
|
864 |
-
|
865 |
-
# In[ ]:
|
866 |
-
|
867 |
-
|
868 |
-
stage2 = StackGanStage2()
|
869 |
-
stage2.train_stage2()
|
870 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|