Spaces:
Runtime error
Runtime error
Commit
·
7f723fa
1
Parent(s):
0ea1ef9
Upload Data_preprocessing.py
Browse files- Data_preprocessing.py +93 -0
Data_preprocessing.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[1]:
|
5 |
+
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import seaborn as sns
|
11 |
+
|
12 |
+
|
13 |
+
# In[2]:
|
14 |
+
|
15 |
+
|
16 |
+
import tensorflow as tf
|
17 |
+
from tensorflow import keras
|
18 |
+
from keras import Sequential
|
19 |
+
from keras.layers import Dense,Convolution2D,Flatten,Dropout,BatchNormalization
|
20 |
+
from tensorflow.keras.layers import MaxPooling2D
|
21 |
+
from keras.preprocessing.image import ImageDataGenerator
|
22 |
+
|
23 |
+
|
24 |
+
# In[ ]:
|
25 |
+
|
26 |
+
|
27 |
+
#val_data=keras.utils.image_dataset_from_directory(
|
28 |
+
#directory="E:\DSspec\Internship\CUB-200-2011\cub_200_2011_64x64_for_fid_10k\cub_200_2011_64x64_10k"
|
29 |
+
#label="inferred",
|
30 |
+
#label_mode="int",
|
31 |
+
#batch_size=32,
|
32 |
+
#iamge_size=(256,256)
|
33 |
+
#)
|
34 |
+
|
35 |
+
|
36 |
+
# In[3]:
|
37 |
+
|
38 |
+
|
39 |
+
train=keras.utils.image_dataset_from_directory(directory="E:\\DSspec\\Internship\\CUB-200-2011\\cub_200_2011_64x64_for_fid_10k",
|
40 |
+
labels="inferred",
|
41 |
+
validation_split=0.2,
|
42 |
+
subset="training",
|
43 |
+
seed=1337,
|
44 |
+
label_mode="int",
|
45 |
+
batch_size=32,
|
46 |
+
image_size=(256,256))
|
47 |
+
|
48 |
+
|
49 |
+
# In[4]:
|
50 |
+
|
51 |
+
|
52 |
+
test=keras.utils.image_dataset_from_directory(directory="E:\\DSspec\\Internship\\CUB-200-2011\\cub_200_2011_64x64_for_fid_10k",
|
53 |
+
labels="inferred",
|
54 |
+
validation_split=0.2,
|
55 |
+
subset="validation",
|
56 |
+
seed=1337,
|
57 |
+
label_mode="int",
|
58 |
+
batch_size=32,
|
59 |
+
image_size=(256,256))
|
60 |
+
|
61 |
+
|
62 |
+
# In[5]:
|
63 |
+
|
64 |
+
|
65 |
+
for image,label in train.take(2):
|
66 |
+
plt.imshow(image[31].numpy().astype("uint8"))
|
67 |
+
plt.show()
|
68 |
+
|
69 |
+
|
70 |
+
# In[8]:
|
71 |
+
|
72 |
+
|
73 |
+
from tensorflow.keras import layers
|
74 |
+
data_augmentation = keras.Sequential(
|
75 |
+
[
|
76 |
+
layers.RandomFlip("horizontal", input_shape=(256, 256, 3)),
|
77 |
+
layers.RandomRotation(0.3),
|
78 |
+
layers.RandomZoom(0.3),
|
79 |
+
]
|
80 |
+
)
|
81 |
+
|
82 |
+
|
83 |
+
# In[9]:
|
84 |
+
|
85 |
+
|
86 |
+
train_gen = train.map(lambda x, y: (data_augmentation(x, training=True), y))
|
87 |
+
|
88 |
+
|
89 |
+
# In[ ]:
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
|