#!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns # In[2]: import tensorflow as tf from tensorflow import keras from keras import Sequential from keras.layers import Dense,Convolution2D,Flatten,Dropout,BatchNormalization from tensorflow.keras.layers import MaxPooling2D from keras.preprocessing.image import ImageDataGenerator # In[ ]: #val_data=keras.utils.image_dataset_from_directory( #directory="E:\DSspec\Internship\CUB-200-2011\cub_200_2011_64x64_for_fid_10k\cub_200_2011_64x64_10k" #label="inferred", #label_mode="int", #batch_size=32, #iamge_size=(256,256) #) # In[3]: train=keras.utils.image_dataset_from_directory(directory="E:\\DSspec\\Internship\\CUB-200-2011\\cub_200_2011_64x64_for_fid_10k", labels="inferred", validation_split=0.2, subset="training", seed=1337, label_mode="int", batch_size=32, image_size=(256,256)) # In[4]: test=keras.utils.image_dataset_from_directory(directory="E:\\DSspec\\Internship\\CUB-200-2011\\cub_200_2011_64x64_for_fid_10k", labels="inferred", validation_split=0.2, subset="validation", seed=1337, label_mode="int", batch_size=32, image_size=(256,256)) # In[5]: for image,label in train.take(2): plt.imshow(image[31].numpy().astype("uint8")) plt.show() # In[8]: from tensorflow.keras import layers data_augmentation = keras.Sequential( [ layers.RandomFlip("horizontal", input_shape=(256, 256, 3)), layers.RandomRotation(0.3), layers.RandomZoom(0.3), ] ) # In[9]: train_gen = train.map(lambda x, y: (data_augmentation(x, training=True), y)) # In[ ]: