File size: 14,236 Bytes
e83d3d6
 
 
 
 
5366905
 
e83d3d6
5366905
e83d3d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5366905
e83d3d6
 
5366905
e83d3d6
5366905
e83d3d6
5366905
e83d3d6
 
5366905
e83d3d6
 
5366905
e83d3d6
 
 
 
5366905
 
 
e83d3d6
 
 
 
 
 
5366905
e83d3d6
 
 
 
 
 
 
 
5366905
e83d3d6
 
 
 
 
 
 
 
5366905
e83d3d6
 
 
 
 
 
 
5366905
e83d3d6
5366905
e83d3d6
 
 
 
 
 
 
5366905
e83d3d6
 
 
 
 
 
 
 
 
5366905
e83d3d6
 
 
 
 
 
 
 
 
 
 
 
 
5366905
e83d3d6
 
5366905
e83d3d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5366905
e83d3d6
 
 
 
 
 
 
 
 
 
5366905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83d3d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5366905
e83d3d6
 
 
 
 
 
5366905
e83d3d6
 
 
 
 
 
 
5366905
e83d3d6
 
 
 
ae66a58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e83d3d6
 
 
 
 
5366905
ae66a58
5366905
 
 
e83d3d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
<!DOCTYPE html>
<html>
<head>
  <meta charset="utf-8">
  <meta name="description"
        content="Demo Page of BEYOND ICML 2024.">
  <meta name="keywords" content="BEYOND, Adversarial Examples, Adversarial Detection">
  <meta name="viewport" content="width=device-width, initial-scale=1">
  <title>Be Your Own Neighborhood: Detecting Adversarial Examples by the Neighborhood Relations Built on Self-Supervised Learning</title>

  <link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
        rel="stylesheet">

  <link rel="stylesheet" href="./static/css/bulma.min.css">
  <link rel="stylesheet" href="./static/css/bulma-carousel.min.css">
  <link rel="stylesheet" href="./static/css/bulma-slider.min.css">
  <link rel="stylesheet" href="./static/css/fontawesome.all.min.css">
  <link rel="stylesheet"
        href="https://cdn.jsdelivr.net/gh/jpswalsh/academicons@1/css/academicons.min.css">
  <link rel="stylesheet" href="./static/css/index.css">
  <link rel="icon" href="./static/images/favicon.svg">

  <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
  <script defer src="./static/js/fontawesome.all.min.js"></script>
  <script src="./static/js/bulma-carousel.min.js"></script>
  <script src="./static/js/bulma-slider.min.js"></script>
  <script src="./static/js/index.js"></script>
</head>
<body>

<section class="hero">
  <div class="hero-body">
    <div class="container is-max-desktop">
      <div class="columns is-centered">
        <div class="column has-text-centered">
          <h1 class="title is-1 publication-title">Be Your Own Neighborhood: Detecting Adversarial Examples by the Neighborhood Relations Built on Self-Supervised Learning</h1>
          <div class="is-size-5 publication-authors">
            <span class="author-block">
              <a href="#" target="_blank">Zhiyuan He</a><sup>1*</sup>,</span>
            <span class="author-block">
              <a href="https://yangyijune.github.io/" target="_blank">Yijun Yang</a><sup>1*</sup>,</span>
            <span class="author-block">
              <a href="https://sites.google.com/site/pinyuchenpage/home" target="_blank">Pin-Yu Chen</a><sup>2</sup>,
            </span>
            <span class="author-block">
              <a href="https://cure-lab.github.io/" target="_blank">Qiang Xu</a><sup>1</sup>,
            </span>
            <span class="author-block">
              <a href="https://tsungyiho.github.io/" target="_blank">Tsung-Yi Ho</a><sup>1</sup>,
            </span>
          </div>

          <div class="is-size-5 publication-authors">
            <span class="author-block"><sup>*</sup>Equal contribution,</span>
            <span class="author-block"><sup>1</sup>The Chinese University of Hong Kong,</span>
            <span class="author-block"><sup>2</sup>IBM Research</span>
          </div>

          <div class="column has-text-centered">
            <div class="publication-links">
              <!-- PDF Link. -->
              <span class="link-block">
                <a href="https://arxiv.org/abs/2209.00005" target="_blank"
                   class="external-link button is-normal is-rounded is-dark">
                  <span class="icon">
                      <i class="fas fa-file-pdf"></i>
                  </span>
                  <span>Paper</span>
                </a>
              </span>
              <span class="link-block">
                <a href="https://arxiv.org/abs/2209.00005" target="_blank"
                   class="external-link button is-normal is-rounded is-dark">
                  <span class="icon">
                      <i class="ai ai-arxiv"></i>
                  </span>
                  <span>arXiv</span>
                </a>
              </span>
              <!-- Video Link. -->
              <!-- <span class="link-block">
                <a href="https://www.youtube.com/watch?v=MrKrnHhk8IA" target="_blank"
                   class="external-link button is-normal is-rounded is-dark">
                  <span class="icon">
                      <i class="fab fa-youtube"></i>
                  </span>
                  <span>Video</span>
                </a>
              </span> -->
              <!-- Code Link. -->
              <!-- <span class="link-block">
                <a href="https://github.com/google/nerfies" target="_blank"
                   class="external-link button is-normal is-rounded is-dark">
                  <span class="icon">
                      <i class="fab fa-github"></i>
                  </span>
                  <span>Code</span>
                  </a>
              </span> -->
            </div>

          </div>
        </div>
      </div>
    </div>
  </div>
</section>

<!-- <section class="hero teaser">
  <div class="container is-max-desktop">
    <div class="hero-body">
      <video id="teaser" autoplay muted loop playsinline height="100%">
        <source src="./static/videos/teaser.mp4"
                type="video/mp4">
      </video>
      <h2 class="subtitle has-text-centered">
        <span class="dnerf">Nerfies</span> turns selfie videos from your phone into
        free-viewpoint
        portraits.
      </h2>
    </div>
  </div>
</section> -->


<!-- <section class="hero is-light is-small">
  <div class="hero-body">
    <div class="container">
      <div id="results-carousel" class="carousel results-carousel">
        <div class="item item-steve">
          <video poster="" id="steve" autoplay controls muted loop playsinline height="100%">
            <source src="./static/videos/steve.mp4"
                    type="video/mp4">
          </video>
        </div>
        <div class="item item-chair-tp">
          <video poster="" id="chair-tp" autoplay controls muted loop playsinline height="100%">
            <source src="./static/videos/chair-tp.mp4"
                    type="video/mp4">
          </video>
        </div>
        <div class="item item-shiba">
          <video poster="" id="shiba" autoplay controls muted loop playsinline height="100%">
            <source src="./static/videos/shiba.mp4"
                    type="video/mp4">
          </video>
        </div>
        <div class="item item-fullbody">
          <video poster="" id="fullbody" autoplay controls muted loop playsinline height="100%">
            <source src="./static/videos/fullbody.mp4"
                    type="video/mp4">
          </video>
        </div>
        <div class="item item-blueshirt">
          <video poster="" id="blueshirt" autoplay controls muted loop playsinline height="100%">
            <source src="./static/videos/blueshirt.mp4"
                    type="video/mp4">
          </video>
        </div>
        <div class="item item-mask">
          <video poster="" id="mask" autoplay controls muted loop playsinline height="100%">
            <source src="./static/videos/mask.mp4"
                    type="video/mp4">
          </video>
        </div>
        <div class="item item-coffee">
          <video poster="" id="coffee" autoplay controls muted loop playsinline height="100%">
            <source src="./static/videos/coffee.mp4"
                    type="video/mp4">
          </video>
        </div>
        <div class="item item-toby">
          <video poster="" id="toby" autoplay controls muted loop playsinline height="100%">
            <source src="./static/videos/toby2.mp4"
                    type="video/mp4">
          </video>
        </div>
      </div>
    </div>
  </div>
</section> -->


<section class="section">
  <div class="container is-max-desktop">
    <!-- Abstract. -->
    <div class="columns is-centered has-text-centered">
      <div class="column is-four-fifths">
        <h2 class="title is-3">Abstract</h2>
        <div class="content has-text-justified">
          <p>
            Deep Neural Networks (DNNs) have achieved excellent performance in various fields. However, DNNs’ vulnerability to 
            Adversarial Examples (AE) hinders their deployments to safety-critical applications. In this paper, we present <strong>BEYOND</strong>, 
            an innovative AE detection frameworkdesigned for reliable predictions. BEYOND identifies AEs by distinguishing the AE’s 
            abnormal relation with its augmented versions, i.e. neighbors, from two prospects: representation similarity and label 
            consistency. An off-the-shelf Self-Supervised Learning (SSL) model is used to extract the representation and predict the 
            label for its highly informative representation capacity compared to supervised learning models. We found clean samples 
            maintain a high degree of representation similarity and label consistency relative to their neighbors, in contrast to AEs 
            which exhibit significant discrepancies. We explain this obser vation and show that leveraging this discrepancy BEYOND can 
            accurately detect AEs. Additionally, we develop a rigorous justification for the effectiveness of BEYOND. Furthermore, as a 
            plug-and-play model, BEYOND can easily cooperate with the Adversarial Trained Classifier (ATC), achieving state-of-the-art 
            (SOTA) robustness accuracy. Experimental results show that BEYOND outperforms baselines by a large margin, especially under 
            adaptive attacks. Empowered by the robust relationship built on SSL, we found that BEYOND outperforms baselines in terms 
            of both detection ability and speed
          </p>
          <!-- <p>
            We present the first method capable of photorealistically reconstructing a non-rigidly
            deforming scene using photos/videos captured casually from mobile phones.
          </p>
          <p>
            Our approach augments neural radiance fields
            (NeRF) by optimizing an
            additional continuous volumetric deformation field that warps each observed point into a
            canonical 5D NeRF.
            We observe that these NeRF-like deformation fields are prone to local minima, and
            propose a coarse-to-fine optimization method for coordinate-based models that allows for
            more robust optimization.
            By adapting principles from geometry processing and physical simulation to NeRF-like
            models, we propose an elastic regularization of the deformation field that further
            improves robustness.
          </p>
          <p>
            We show that <span class="dnerf">Nerfies</span> can turn casually captured selfie
            photos/videos into deformable NeRF
            models that allow for photorealistic renderings of the subject from arbitrary
            viewpoints, which we dub <i>"nerfies"</i>. We evaluate our method by collecting data
            using a
            rig with two mobile phones that take time-synchronized photos, yielding train/validation
            images of the same pose at different viewpoints. We show that our method faithfully
            reconstructs non-rigidly deforming scenes and reproduces unseen views with high
            fidelity.
          </p> -->
        </div>
      </div>
    </div>
    <!--/ Abstract. -->

    <!-- Paper video. -->
    <!-- <div class="columns is-centered has-text-centered">
      <div class="column is-four-fifths">
        <h2 class="title is-3">Video</h2>
        <div class="publication-video">
          <iframe src="https://www.youtube.com/embed/MrKrnHhk8IA?rel=0&amp;showinfo=0"
                  frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe>
        </div>
      </div>
    </div> -->
    <!--/ Paper video. -->
  </div>
</section>

<section class="section">
  <div class="container is-max-desktop">
    <div class="columns is-centered">
      <div class="column has-text-centered">
        <h2 class="title is-3">Introduction</h2>

      </div>
    </div>
  </div>
</section>

<section class="section">
  <div class="container is-max-desktop">
    <div class="columns is-centered">
      <div class="column has-text-centered">
        <h2 class="title is-3">Method Overview of BEYOND</h2>
        
      </div>
    </div>
  </div>
</section>

<section class="section">
  <div class="container is-max-desktop">
    <div class="columns is-centered">
      <div class="column has-text-centered">
        <h2 class="title is-3">Method Overview of BEYOND</h2>
        
      </div>
    </div>
  </div>
</section>


<section class="section" id="BibTeX">
  <div class="container is-max-desktop content">
    <h2 class="title">BibTeX</h2>
    <pre><code>@article{he2024beyond,
  author    = {Zhiyuan, He and Yijun, Yang and Pin-Yu, Chen and Qiang, Xu and Tsung-Yi, Ho},
  title     = {Be your own neighborhood: Detecting adversarial example by the neighborhood relations built on self-supervised learning},
  journal   = {ICML},
  year      = {2024},
}</code></pre>
  </div>
</section>


<footer class="footer">
  <div class="container">
    <div class="content has-text-centered">
      <a class="icon-link" target="_blank"
         href="./static/videos/nerfies_paper.pdf">
        <i class="fas fa-file-pdf"></i>
      </a>
      <a class="icon-link" href="https://github.com/keunhong" target="_blank" class="external-link" disabled>
        <i class="fab fa-github"></i>
      </a>
    </div>
    <div class="columns is-centered">
      <div class="column is-8">
        <div class="content">
          <p>
            This website is licensed under a <a rel="license" target="_blank"
                                                href="http://creativecommons.org/licenses/by-sa/4.0/">Creative
            Commons Attribution-ShareAlike 4.0 International License</a>.
          </p>
          <p>
            This means you are free to borrow the <a target="_blank"
              href="https://github.com/nerfies/nerfies.github.io">source code</a> of this website,
            we just ask that you link back to this page in the footer.
            Please remember to remove the analytics code included in the header of the website which
            you do not want on your website.
          </p>
        </div>
      </div>
    </div>
  </div>
</footer>

</body>
</html>