zaitang commited on
Commit
051178e
·
verified ·
1 Parent(s): 0161786

Update index.html

Browse files
Files changed (1) hide show
  1. index.html +204 -188
index.html CHANGED
@@ -3,11 +3,10 @@
3
  <head>
4
  <meta charset="utf-8">
5
  <meta name="description"
6
- content="Demo Page of GREAT Score Neurips 2024.">
7
- <meta name="keywords" content="GREAT Score, Adversarial robustness, Generative models">
8
  <meta name="viewport" content="width=device-width, initial-scale=1">
9
- <title>GREAT Score: Global Robustness Evaluation of
10
- Adversarial Perturbation using Generative Models</title>
11
 
12
  <link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
13
  rel="stylesheet">
@@ -82,8 +81,7 @@
82
  <div class="container is-max-desktop">
83
  <div class="columns is-centered">
84
  <div class="column has-text-centered">
85
- <h1 class="title is-1 publication-title">GREAT Score: Global Robustness Evaluation of
86
- Adversarial Perturbation using Generative Models</h1>
87
  <div class="is-size-5 publication-authors">
88
  <span class="author-block">
89
  <a href="#" target="_blank">ZAITANG LI</a><sup>1</sup>,</span>
@@ -176,7 +174,7 @@
176
  <h2 class="title is-3">Abstract</h2>
177
  <div class="content has-text-justified">
178
  <p>
179
- Current studies on adversarial robustness mainly focus on aggregating <i>local</i> robustness results from a set of data samples to evaluate and rank different models. However, the local statistics may not well represent the true <i>global</i> robustness of the underlying unknown data distribution. To address this challenge, this paper makes the first attempt to present a new framework, called <strong>GREAT Score</strong>, for global robustness evaluation of adversarial perturbation using generative models. Formally, GREAT Score carries the physical meaning of a global statistic capturing a mean certified attack-proof perturbation level over all samples drawn from a generative model. For finite-sample evaluation, we also derive a probabilistic guarantee on the sample complexity and the difference between the sample mean and the true mean. GREAT Score has several advantages: (1) Robustness evaluations using GREAT Score are efficient and scalable to large models, by sparing the need of running adversarial attacks. In particular, we show high correlation and significantly reduced computation cost of GREAT Score when compared to the attack-based model ranking on RobustBench<sup>1</sup>. (2) The use of generative models facilitates the approximation of the unknown data distribution. In our ablation study with different generative adversarial networks (GANs), we observe consistency between global robustness evaluation and the quality of GANs. (3) GREAT Score can be used for remote auditing of privacy-sensitive black-box models, as demonstrated by our robustness evaluation on several online facial recognition services.
180
  </p>
181
  </div>
182
 
@@ -199,12 +197,8 @@
199
  <h2 class="title is-3">Method Overview of GREAT Score</h2>
200
  <div class="columns is-centered">
201
  <div class="column container-centered">
202
- <img src="./static/images/GREAT_Score_overview.png" alt="Method Overview of GREAT Score"/>
203
- <p><strong>Figure 1. Overview of GREAT Score.</strong> The process involves three main steps:
204
- (1) Data Generation: We use a generative model to create synthetic samples.
205
- (2) Local Robustness Evaluation: For each generated sample, we calculate a local robustness score based on the classifier's confidence.
206
- (3) Global Robustness Estimation: We aggregate the local scores to estimate the overall robustness of the classifier.
207
- This method provides a certified lower bound on the true global robustness without requiring access to the original dataset or exhaustive adversarial attacks.</p>
208
  </div>
209
  </div>
210
  </div>
@@ -216,14 +210,13 @@
216
 
217
  <!-- Robustness Certificate Definition -->
218
  <section class="section">
219
-
220
  <div class="container is-max-desktop">
221
- <h2 class="title is-3">Robustness Certificate Definition</h2>
222
 
223
  <div class="columns is-centered">
224
  <div class="column container formula">
225
  <p>
226
- GREAT Score is designed to evaluate the global robustness of classifiers against adversarial attacks. It uses generative models to estimate a certified lower bound on true global robustness. For a K-way classifier f, we define a local robustness score g(G(z)) for a generated sample G(z), where G is a generator and z is sampled from a standard Gaussian distribution. This score measures the confidence gap between the correct class prediction and the most likely incorrect class. The GREAT Score, defined as the expectation of g(G(z)) over z, provides a certified lower bound on the true global robustness with respect to the data distribution learned by the generative model. This approach allows us to estimate global robustness without knowing the exact data distribution or minimal perturbations for each sample.
227
  </p>
228
  </div>
229
  </div>
@@ -232,28 +225,25 @@
232
  <div class="column container-centered">
233
  <div id="adaptive-loss-formula" class="container">
234
  <div id="adaptive-loss-formula-list" class="row align-items-center formula-list">
235
- <a href=".true-global-robustness" class="selected">True Global Robustness</a>
236
- <a href=".global-robustness-estimate">Global Robustness Estimate</a>
237
- <a href=".local-robustness-score">Local Robustness Score</a>
238
  <div style="clear: both"></div>
239
  </div>
240
  <div class="row align-items-center adaptive-loss-formula-content">
241
- <span class="formula true-global-robustness formula-content">
242
- $$
243
- \displaystyle
244
- \Omega(f) = \mathbb{E}_{x\sim P}[\Delta_{min}(x)]= \int_{x \sim P} \Delta_{\min}(x) p(x)dx
245
- $$
246
- </span>
247
- <span class="formula global-robustness-estimate formula-content" style="display: none;">
248
  $$
249
- \displaystyle
250
- \widehat{\Omega}(f) = \mathbb{E}_{x\sim P}[g(x)]= \int_{x \sim P} g(x) p(x)dx
 
 
251
  $$
252
  </span>
253
- <span class="formula local-robustness-score formula-content" style="display: none;">
254
  $$
255
- \displaystyle
256
- g\left(G(z)\right) = \sqrt{\cfrac{\pi}{2}} \cdot \max\{ f_c(G(z)) - \max_{k \in \{1,\ldots,K\},k\neq c} f_k(G(z)),0 \}
 
 
257
  $$
258
  </span>
259
  </div>
@@ -263,227 +253,226 @@
263
 
264
  <div class="columns is-centered">
265
  <div class="column container adaptive-loss-formula-content">
266
- <p class="formula true-global-robustness formula-content">
267
- where f is a classifier, P is a data distribution, and Δ<sub>min</sub>(x) is the minimal perturbation for a sample x.
268
- </p>
269
- <p class="formula global-robustness-estimate formula-content" style="display: none">
270
- where g(x) is a local robustness statistic, and this estimate is used when the exact probability density function of P and local minimal perturbations are unknown.
271
  </p>
272
- <p class="formula local-robustness-score formula-content" style="display: none;">
273
- where G(z) is a generated data sample, f<sub>c</sub> is the confidence score for the correct class c, and f<sub>k</sub> are the confidence scores for other classes.
274
  </p>
275
  </div>
276
  </div>
277
-
278
-
279
-
280
- </section>
281
 
282
 
283
 
284
  <!-- Results -->
285
  <section class="section">
286
  <div class="container is-max-desktop">
287
- <h2 class="title is-3">GREAT Score Results</h2>
288
  <div class="columns is-centered">
289
  <div class="column container-centered">
290
  <table class="tg" border="1" style="width:100%;">
291
- <caption><strong>Table 1.</strong> Comparison of (Calibrated) GREAT Score v.s. minimal distortion found by CW attack on CIFAR-10. The results are averaged over 500 samples from StyleGAN2.</caption>
292
  <thead>
293
  <tr>
294
- <th class="tg-amwm">Model Name</th>
295
- <th class="tg-baqh">RobustBench Accuracy(%)</th>
296
- <th class="tg-baqh">AutoAttack Accuracy(%)</th>
297
- <th class="tg-baqh">GREAT Score</th>
298
- <th class="tg-baqh">Calibrated GREAT Score</th>
299
- <th class="tg-baqh">CW Distortion</th>
300
- </tr>
301
- </thead>
302
- <tbody>
303
- <tr>
304
- <td class="tg-baqh">Rebuffi_extra</td>
305
- <td class="tg-baqh">82.32</td>
306
- <td class="tg-baqh">87.20</td>
307
- <td class="tg-baqh">0.507</td>
308
- <td class="tg-baqh">1.216</td>
309
- <td class="tg-baqh">1.859</td>
310
- </tr>
311
- <tr>
312
- <td class="tg-baqh">Gowal_extra</td>
313
- <td class="tg-baqh">80.53</td>
314
- <td class="tg-baqh">85.60</td>
315
- <td class="tg-baqh">0.534</td>
316
- <td class="tg-baqh">1.213</td>
317
- <td class="tg-baqh">1.324</td>
318
- </tr>
319
- <tr>
320
- <td class="tg-baqh">Rebuffi_70_ddpm</td>
321
- <td class="tg-baqh">80.42</td>
322
- <td class="tg-baqh">90.60</td>
323
- <td class="tg-baqh">0.451</td>
324
- <td class="tg-baqh">1.208</td>
325
- <td class="tg-baqh">1.943</td>
326
- </tr>
327
- <tr>
328
- <td class="tg-baqh">Rebuffi_28_ddpm</td>
329
- <td class="tg-baqh">78.80</td>
330
- <td class="tg-baqh">90.00</td>
331
- <td class="tg-baqh">0.424</td>
332
- <td class="tg-baqh">1.214</td>
333
- <td class="tg-baqh">1.796</td>
334
- </tr>
335
- <tr>
336
- <td class="tg-baqh">Augustin_WRN_extra</td>
337
- <td class="tg-baqh">78.79</td>
338
- <td class="tg-baqh">86.20</td>
339
- <td class="tg-baqh">0.525</td>
340
- <td class="tg-baqh">1.206</td>
341
- <td class="tg-baqh">1.340</td>
342
  </tr>
343
  <tr>
344
- <td class="tg-baqh">Sehwag</td>
345
- <td class="tg-baqh">77.24</td>
346
- <td class="tg-baqh">89.20</td>
347
- <td class="tg-baqh">0.227</td>
348
- <td class="tg-baqh">1.143</td>
349
- <td class="tg-baqh">1.392</td>
350
- </tr>
351
- <tr>
352
- <td class="tg-baqh">Augustin_WRN</td>
353
- <td class="tg-baqh">76.25</td>
354
- <td class="tg-baqh">86.40</td>
355
- <td class="tg-baqh">0.583</td>
356
- <td class="tg-baqh">1.206</td>
357
- <td class="tg-baqh">1.332</td>
358
- </tr>
359
- <tr>
360
- <td class="tg-baqh">Rade</td>
361
- <td class="tg-baqh">76.15</td>
362
- <td class="tg-baqh">86.60</td>
363
- <td class="tg-baqh">0.413</td>
364
- <td class="tg-baqh">1.200</td>
365
- <td class="tg-baqh">1.486</td>
366
  </tr>
 
 
367
  <tr>
368
- <td class="tg-baqh">Rebuffi_R18</td>
369
- <td class="tg-baqh">75.86</td>
370
- <td class="tg-baqh">87.60</td>
371
- <td class="tg-baqh">0.369</td>
372
- <td class="tg-baqh">1.210</td>
373
- <td class="tg-baqh">1.413</td>
 
374
  </tr>
375
  <tr>
376
- <td class="tg-baqh">Gowal</td>
377
- <td class="tg-baqh">74.50</td>
378
- <td class="tg-baqh">86.40</td>
379
- <td class="tg-baqh">0.124</td>
380
- <td class="tg-baqh">1.116</td>
381
- <td class="tg-baqh">1.253</td>
 
382
  </tr>
383
  <tr>
384
- <td class="tg-baqh">Sehwag_R18</td>
385
- <td class="tg-baqh">74.41</td>
386
- <td class="tg-baqh">88.60</td>
387
- <td class="tg-baqh">0.236</td>
388
- <td class="tg-baqh">1.135</td>
389
- <td class="tg-baqh">1.343</td>
 
390
  </tr>
391
  <tr>
392
- <td class="tg-baqh">Wu2020Adversarial</td>
393
- <td class="tg-baqh">73.66</td>
394
- <td class="tg-baqh">84.60</td>
395
- <td class="tg-baqh">0.128</td>
396
- <td class="tg-baqh">1.110</td>
397
- <td class="tg-baqh">1.369</td>
 
398
  </tr>
399
  <tr>
400
- <td class="tg-baqh">Augustin2020Adversarial</td>
401
- <td class="tg-baqh">72.91</td>
402
- <td class="tg-baqh">85.20</td>
403
- <td class="tg-baqh">0.569</td>
404
- <td class="tg-baqh">1.199</td>
405
- <td class="tg-baqh">1.285</td>
 
406
  </tr>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
407
  <tr>
408
- <td class="tg-baqh">Engstrom2019Robustness</td>
409
- <td class="tg-baqh">69.24</td>
410
- <td class="tg-baqh">82.20</td>
411
- <td class="tg-baqh">0.160</td>
412
- <td class="tg-baqh">1.020</td>
413
- <td class="tg-baqh">1.084</td>
414
  </tr>
 
 
415
  <tr>
416
- <td class="tg-baqh">Rice2020Overfitting</td>
417
- <td class="tg-baqh">67.68</td>
418
- <td class="tg-baqh">81.80</td>
419
- <td class="tg-baqh">0.152</td>
420
- <td class="tg-baqh">1.040</td>
421
- <td class="tg-baqh">1.097</td>
422
  </tr>
423
  <tr>
424
- <td class="tg-baqh">Rony2019Decoupling</td>
425
- <td class="tg-baqh">66.44</td>
426
- <td class="tg-baqh">79.20</td>
427
- <td class="tg-baqh">0.275</td>
428
- <td class="tg-baqh">1.101</td>
429
- <td class="tg-baqh">1.165</td>
430
  </tr>
431
  <tr>
432
- <td class="tg-baqh">Ding2020MMA</td>
433
- <td class="tg-baqh">66.09</td>
434
- <td class="tg-baqh">77.60</td>
435
- <td class="tg-baqh">0.112</td>
436
- <td class="tg-baqh">0.909</td>
437
- <td class="tg-baqh">1.095</td>
438
  </tr>
439
  </tbody>
440
- </table>
441
  </div>
442
  </div>
443
  </div>
444
  </section>
445
- <!-- Results -->
446
 
 
 
 
 
 
 
 
 
 
 
447
  <!-- Model Ranking Comparison Section -->
448
  <section class="section">
449
  <div class="container is-max-desktop">
450
- <h2 class="title is-3">Model Ranking Comparison</h2>
451
  <div class="columns is-centered">
452
  <div class="column is-full-width">
453
  <div class="content has-text-justified">
 
 
 
 
 
 
 
 
 
 
 
 
454
  <table class="table is-bordered is-striped is-narrow is-hoverable is-fullwidth">
455
- <caption><strong>Table 2.</strong> Spearman's rank correlation coefficient on CIFAR-10 using GREAT Score, RobustBench (with test set), and Auto-Attack (with generated samples).</caption>
456
  <thead>
457
  <tr>
458
  <th></th>
459
- <th>Uncalibrated</th>
460
- <th>Calibrated</th>
 
 
 
461
  </tr>
462
  </thead>
463
  <tbody>
464
  <tr>
465
- <td>GREAT Score vs. RobustBench Correlation</td>
466
- <td>0.6618</td>
467
- <td>0.8971</td>
 
 
 
 
 
 
 
 
 
 
 
468
  </tr>
469
  <tr>
470
- <td>GREAT Score vs. AutoAttack Correlation</td>
471
- <td>0.3690</td>
472
- <td>0.6941</td>
 
 
 
473
  </tr>
474
  <tr>
475
- <td>RobustBench vs. AutoAttack Correlation</td>
476
- <td>0.7296</td>
477
- <td>0.7296</td>
 
 
 
 
 
 
 
 
 
 
 
478
  </tr>
479
  </tbody>
480
  </table>
481
-
482
  <p>
483
- We compare the model ranking on CIFAR-10 using GREAT Score (evaluated with generated samples), RobustBench (evaluated with Auto-Attack on the test set), and Auto-Attack (evaluated with Auto-Attack on generated samples).
484
- Table 2 presents their mutual rank correlation (higher value means more aligned ranking) with calibrated and uncalibrated versions.
485
- We note that there is an innate discrepancy between Spearman's rank correlation coefficient (way below 1) of RobustBench vs. Auto-Attack, which means Auto-Attack will give inconsistent model rankings when evaluated on different data samples. In addition, GREAT Score measures <em>classification margin</em>, while AutoAttack measures <em>accuracy</em> under a fixed perturbation budget ε. AutoAttack's ranking will change if we use different ε values. E.g., comparing the ranking of ε=0.3 and ε=0.7 on 10000 CIFAR-10 test images for AutoAttack, the Spearman's correlation is only 0.9485. Therefore, we argue that GREAT Score and AutoAttack are <em>complementary</em> evaluation metrics and they don't need to match perfectly.
486
- Despite their discrepancy, before calibration, the correlation between GREAT Score and RobustBench yields a similar value. With calibration, there is a significant improvement in rank correlation between GREAT Score to Robustbench and Auto-Attack, respectively.
 
487
  </p>
488
  </div>
489
  </div>
@@ -513,6 +502,33 @@
513
  </section>
514
  <!-- GREAT Score vs CW Attack Comparison Section -->
515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
516
 
517
 
518
 
 
3
  <head>
4
  <meta charset="utf-8">
5
  <meta name="description"
6
+ content="Demo Page of Retention Score AAAI 2025.">
7
+ <meta name="keywords" content="Retention Score, Adversarial robustness, Generative models, Vision-Language Models">
8
  <meta name="viewport" content="width=device-width, initial-scale=1">
9
+ <title>Retention Score: Quantifying Jailbreak Risks for Vision Language Models</title>
 
10
 
11
  <link href="https://fonts.googleapis.com/css?family=Google+Sans|Noto+Sans|Castoro"
12
  rel="stylesheet">
 
81
  <div class="container is-max-desktop">
82
  <div class="columns is-centered">
83
  <div class="column has-text-centered">
84
+ <h1 class="title is-1 publication-title">Retention Score: Quantifying Jailbreak Risks for Vision Language Models</h1>
 
85
  <div class="is-size-5 publication-authors">
86
  <span class="author-block">
87
  <a href="#" target="_blank">ZAITANG LI</a><sup>1</sup>,</span>
 
174
  <h2 class="title is-3">Abstract</h2>
175
  <div class="content has-text-justified">
176
  <p>
177
+ The emergence of Vision-Language Models (VLMs) is significant advancement in integrating computer vision with Large Language Models (LLMs) to enhance multi-modal machine learning capabilities. However, this progress has made VLMs vulnerable to advanced adversarial attacks, raising concerns about reliability. Objective of this paper is to assess resilience of VLMs against jailbreak attacks that can compromise model safety compliance and result in harmful outputs. To evaluate VLM's ability to maintain robustness against adversarial input perturbations, we propose novel metric called \textbf{Retention Score}. Retention Score is multi-modal evaluation metric that includes Retention-I and Retention-T scores for quantifying jailbreak risks in visual and textual components of VLMs. Our process involves generating synthetic image-text pairs using conditional diffusion model. These pairs are then predicted for toxicity score by VLM alongside toxicity judgment classifier. By calculating margin in toxicity scores, we can quantify robustness of VLM in attack-agnostic manner. Our work has four main contributions. First, we prove that Retention Score can serve as certified robustness metric. Second, we demonstrate that most VLMs with visual components are less robust against jailbreak attacks than corresponding plain VLMs. Additionally, we evaluate black-box VLM APIs and find that security settings in Google Gemini significantly affect score and robustness. Moreover, robustness of GPT4V is similar to medium settings of Gemini. Finally, our approach offers time-efficient alternative to existing adversarial attack methods and provides consistent model robustness rankings when evaluated on VLMs including MiniGPT-4, InstructBLIP, and LLaVA.
178
  </p>
179
  </div>
180
 
 
197
  <h2 class="title is-3">Method Overview of GREAT Score</h2>
198
  <div class="columns is-centered">
199
  <div class="column container-centered">
200
+ <img src="./static/images/method.png" alt="Method Overview of Retention Score"/>
201
+ <p><strong>Flow chart of calculating Retention-Image and Retention-Text scores for VLMs. Given some evaluation samples, we first use diffusion generators to create semantically similar synthetic samples. Then, we pass the generated samples into a VLM to get responses and further use a toxicity judgment model (e.g., Perspective API \textsuperscript{1} or an LLM like Llama-70B (Touvron et al. 2023)) for toxicity level predictions. Finally, we use these statistics to compute the Retention Score as detailed in Section 3.2.</p>
 
 
 
 
202
  </div>
203
  </div>
204
  </div>
 
210
 
211
  <!-- Robustness Certificate Definition -->
212
  <section class="section">
 
213
  <div class="container is-max-desktop">
214
+ <h2 class="title is-3">Establishing the Retention Score Framework</h2>
215
 
216
  <div class="columns is-centered">
217
  <div class="column container formula">
218
  <p>
219
+ Revisiting concepts introduced earlier, minimal perturbations for Image-Text pair in context of VLMs were established. We proposed that greater values of minimal perturbations correlate with enhanced local robustness of model M for pair (I, T). Consequently, estimating lower bounds for these minimal perturbations provides measure of VLMs' robustness. To quantify robustness, we introduce Retention Score, which aims to provide assessment of VLM resilience against input perturbations. Higher Retention Scores signify model's inherent robustness, indicative of safeguards against adversarial toxicity manipulation. Retention Score is multimodal measure capable of assessing conditional robustness of VLMs across visual, textual domains, further divided into Retention-Image (Retention-I) and Retention-Text (Retention-T) scores.
220
  </p>
221
  </div>
222
  </div>
 
225
  <div class="column container-centered">
226
  <div id="adaptive-loss-formula" class="container">
227
  <div id="adaptive-loss-formula-list" class="row align-items-center formula-list">
228
+ <a href=".retention-image" class="selected">Retention-Image Score</a>
229
+ <a href=".retention-text">Retention-Text Score</a>
 
230
  <div style="clear: both"></div>
231
  </div>
232
  <div class="row align-items-center adaptive-loss-formula-content">
233
+ <span class="formula retention-image formula-content">
 
 
 
 
 
 
234
  $$
235
+ \begin{align}
236
+ g_I(M,G_I(z|I), T) &= \sqrt{\frac{\pi}{2}} \cdot \{ M_{nt}(G_I(z|I), T) - M_t(G_I(z|I), T) \}^{+} \\
237
+ R_I(M, I, \mathbb{X}) &= \frac{1}{m \cdot n} \sum_{j=1}^m \sum_{i=1}^n g_I(M,G_I(z_i|I), T_j))
238
+ \end{align}
239
  $$
240
  </span>
241
+ <span class="formula retention-text formula-content" style="display: none;">
242
  $$
243
+ \begin{align}
244
+ g_T(M,I, s(G_T(z|T))) &= \sqrt{\frac{\pi}{2}} \cdot \{ M_{nt}(I, \psi(s(G_T(z|T)))) - M_t(I, \psi(s(G_T(z|T)))) \}^{+} \\
245
+ R_T(M, I,\mathbb{X}) &= \frac{1}{m \cdot n} \sum_{j=1}^m \sum_{i=1}^n g_T(M,I, \psi(s(G_T(z_i|T_j))))
246
+ \end{align}
247
  $$
248
  </span>
249
  </div>
 
253
 
254
  <div class="columns is-centered">
255
  <div class="column container adaptive-loss-formula-content">
256
+ <p class="formula retention-image formula-content">
257
+ where G_I(z|I) is a continuous diffusion-based image generation model that synthesizes semantically similar images to I, given a zero-mean isotropic Gaussian-distributed input z. The local score function g_I evaluates the non-toxicity of the generated image associated with the given prompt T.
 
 
 
258
  </p>
259
+ <p class="formula retention-text formula-content" style="display: none;">
260
+ where G_T(z|T) refers to a text generator founded on paraphrasing diffusion techniques, s and ψ represent semantic encoder and decoder that translate discrete textual information into continuous vectorial representation and vice versa.
261
  </p>
262
  </div>
263
  </div>
264
+ </div>
265
+ </section>
 
 
266
 
267
 
268
 
269
  <!-- Results -->
270
  <section class="section">
271
  <div class="container is-max-desktop">
272
+ <h2 class="title is-3">Retention Image Score Results</h2>
273
  <div class="columns is-centered">
274
  <div class="column container-centered">
275
  <table class="tg" border="1" style="width:100%;">
276
+ <caption><strong>Table 1.</strong> Jailbreak risk evaluation of VLMs to image attacks. This table presents a comparison among three VLMs — MiniGPT-4, LLaVA, and InstructBLIP with regards to their Retention Scores (Retention-I), and Attack Success Rates (ASR, calculated as the percentage of outputs displaying toxic attributes).</caption>
277
  <thead>
278
  <tr>
279
+ <th class="tg-amwm"></th>
280
+ <th class="tg-baqh" colspan="2">MiniGPT-4</th>
281
+ <th class="tg-baqh" colspan="2">LLaVA</th>
282
+ <th class="tg-baqh" colspan="2">InstructBLIP</th>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
283
  </tr>
284
  <tr>
285
+ <th class="tg-amwm"></th>
286
+ <th class="tg-baqh">Retention-I</th>
287
+ <th class="tg-baqh">ASR (%)</th>
288
+ <th class="tg-baqh">Retention-I</th>
289
+ <th class="tg-baqh">ASR (%)</th>
290
+ <th class="tg-baqh">Retention-I</th>
291
+ <th class="tg-baqh">ASR (%)</th>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
292
  </tr>
293
+ </thead>
294
+ <tbody>
295
  <tr>
296
+ <td class="tg-baqh">Young</td>
297
+ <td class="tg-baqh">0.6121</td>
298
+ <td class="tg-baqh">40.93</td>
299
+ <td class="tg-baqh">0.2866</td>
300
+ <td class="tg-baqh">58.86</td>
301
+ <td class="tg-baqh">0.5043</td>
302
+ <td class="tg-baqh">49.72</td>
303
  </tr>
304
  <tr>
305
+ <td class="tg-baqh">Old</td>
306
+ <td class="tg-baqh">0.5917</td>
307
+ <td class="tg-baqh">43.27</td>
308
+ <td class="tg-baqh">0.2636</td>
309
+ <td class="tg-baqh">64.71</td>
310
+ <td class="tg-baqh">0.5650</td>
311
+ <td class="tg-baqh">47.76</td>
312
  </tr>
313
  <tr>
314
+ <td class="tg-baqh">Woman</td>
315
+ <td class="tg-baqh">0.5621</td>
316
+ <td class="tg-baqh">42.12</td>
317
+ <td class="tg-baqh">0.2261</td>
318
+ <td class="tg-baqh">57.70</td>
319
+ <td class="tg-baqh">0.4861</td>
320
+ <td class="tg-baqh">52.00</td>
321
  </tr>
322
  <tr>
323
+ <td class="tg-baqh">Man</td>
324
+ <td class="tg-baqh">0.5438</td>
325
+ <td class="tg-baqh">42.63</td>
326
+ <td class="tg-baqh">0.1971</td>
327
+ <td class="tg-baqh">52.16</td>
328
+ <td class="tg-baqh">0.4966</td>
329
+ <td class="tg-baqh">50.36</td>
330
  </tr>
331
  <tr>
332
+ <td class="tg-baqh">Average</td>
333
+ <td class="tg-baqh">0.5774</td>
334
+ <td class="tg-baqh">42.49</td>
335
+ <td class="tg-baqh">0.2434</td>
336
+ <td class="tg-baqh">58.36</td>
337
+ <td class="tg-baqh">0.5130</td>
338
+ <td class="tg-baqh">49.96</td>
339
  </tr>
340
+ </tbody>
341
+ </table>
342
+ </div>
343
+ </div>
344
+ </div>
345
+ </section>
346
+ <!-- Results -->
347
+
348
+ <section class="section">
349
+ <div class="container is-max-desktop">
350
+ <h2 class="title is-3">Retention Text Score Results</h2>
351
+ <div class="columns is-centered">
352
+ <div class="column container-centered">
353
+ <table class="tg" border="1" style="width:100%;">
354
+ <caption><strong>Table 2.</strong> Jailbreak risk evaluation of VLMs to text attacks. This table presents a comparison among three VLMs — MiniGPT-4, LLaVA, and InstructBLIP — with regards to their Retention Scores (Retention-T), Attack Success Rates.</caption>
355
+ <thead>
356
  <tr>
357
+ <th class="tg-amwm">VLM</th>
358
+ <th class="tg-baqh">Retention-T</th>
359
+ <th class="tg-baqh">Attack Success Rate</th>
 
 
 
360
  </tr>
361
+ </thead>
362
+ <tbody>
363
  <tr>
364
+ <td class="tg-baqh">MiniGPT-4</td>
365
+ <td class="tg-baqh">0.2073</td>
366
+ <td class="tg-baqh">46.1%</td>
 
 
 
367
  </tr>
368
  <tr>
369
+ <td class="tg-baqh">LLaVA</td>
370
+ <td class="tg-baqh">0.342</td>
371
+ <td class="tg-baqh">9.4%</td>
 
 
 
372
  </tr>
373
  <tr>
374
+ <td class="tg-baqh">InstructBLIP</td>
375
+ <td class="tg-baqh">0.164</td>
376
+ <td class="tg-baqh">84.5%</td>
 
 
 
377
  </tr>
378
  </tbody>
379
+ </table>
380
  </div>
381
  </div>
382
  </div>
383
  </section>
 
384
 
385
+
386
+
387
+
388
+
389
+
390
+
391
+
392
+
393
+
394
+
395
  <!-- Model Ranking Comparison Section -->
396
  <section class="section">
397
  <div class="container is-max-desktop">
398
+ <h2 class="title is-3">API Model Analysis</h2>
399
  <div class="columns is-centered">
400
  <div class="column is-full-width">
401
  <div class="content has-text-justified">
402
+ <p>
403
+ Assessing the robustness of black-box VLMs is of paramount importance, particularly since these models are commonly deployed as APIs, restricting users and auditors to inferential interactions. This constraint not only makes adversarial attacks challenging but also underscores the necessity for robust evaluation methods that do not depend on internal model access. In this context, our research deploys the Retention-I score to examine the resilience of APIs against synthetically produced facial images with concealed attributes, which are typically employed in model inferences.
404
+ </p>
405
+
406
+ <p>
407
+ Our evaluation methodology was applied to two prominent online vision language APIs: GPT-4V and Gemini Pro Vision. Noteworthy is that for Gemini Pro Vision, the API provides settings to adjust the model's threshold for blocking harmful content, with options ranging from blocking none to most (none, few, some, and most). We tested this feature by running identical prompts and images across these settings, leading to an evaluation of five model configurations.
408
+ </p>
409
+
410
+ <p>
411
+ The assessment centered around the Retention-I score, using a balanced set of synthetic faces that included young, old, male, and female groups. These images were generated using the state-of-the-art Stable Diffusion model, with each group contributing 100 images. A unique aspect of Google's Gemini is its error messaging system, which, in lieu of producing toxic outputs, provides rationales for prompt blocking. In our study, such blocks were interpreted as a zero toxicity score, aligning with the model's safeguarding strategy.
412
+ </p>
413
+
414
  <table class="table is-bordered is-striped is-narrow is-hoverable is-fullwidth">
415
+ <caption><strong>Table 3.</strong> Retention-I analysis of VLM APIs. Each group consists of 100 images with 20 continuation prompts.</caption>
416
  <thead>
417
  <tr>
418
  <th></th>
419
+ <th>Young</th>
420
+ <th>Old</th>
421
+ <th>Woman</th>
422
+ <th>Man</th>
423
+ <th>Average</th>
424
  </tr>
425
  </thead>
426
  <tbody>
427
  <tr>
428
+ <td>GPT-4v</td>
429
+ <td>1.2043</td>
430
+ <td>1.2077</td>
431
+ <td>1.2067</td>
432
+ <td>1.2052</td>
433
+ <td>1.2059</td>
434
+ </tr>
435
+ <tr>
436
+ <td>Gemini-None</td>
437
+ <td>0.3025</td>
438
+ <td>0.2432</td>
439
+ <td>0.2300</td>
440
+ <td>0.2126</td>
441
+ <td>0.2471</td>
442
  </tr>
443
  <tr>
444
+ <td>Gemini-Few</td>
445
+ <td>1.1955</td>
446
+ <td>1.1806</td>
447
+ <td>1.1972</td>
448
+ <td>1.1987</td>
449
+ <td>1.1930</td>
450
  </tr>
451
  <tr>
452
+ <td>Gemini-Some</td>
453
+ <td>1.2322</td>
454
+ <td>1.2486</td>
455
+ <td>1.2325</td>
456
+ <td>1.2382</td>
457
+ <td>1.2379</td>
458
+ </tr>
459
+ <tr>
460
+ <td>Gemini-Most</td>
461
+ <td>1.2449</td>
462
+ <td>1.2494</td>
463
+ <td>1.2388</td>
464
+ <td>1.2479</td>
465
+ <td>1.2453</td>
466
  </tr>
467
  </tbody>
468
  </table>
469
+
470
  <p>
471
+ Our results in Table 3 reveal intriguing variations across different APIs. For instance, Gemini-None exhibited notable performance contrasts when comparing Old versus Young cohorts. Other models showcased more uniform robustness levels across demographic groups. Also, Our analysis positions the robustness of GPT-4V somewhere between the some and most safety settings of Gemini. This correlation not only validates the efficacy of Gemini's protective configurations but also underscores the impact of safety thresholds on toxicity recognition, as quantified by our scoring method.
472
+ </p>
473
+
474
+ <p>
475
+ This robustness evaluation illustrates that Retention-I is a pivotal tool for analyzing group-level resilience in models with restricted access, enabling discreet and efficacious scrutiny of their defenses.
476
  </p>
477
  </div>
478
  </div>
 
502
  </section>
503
  <!-- GREAT Score vs CW Attack Comparison Section -->
504
 
505
+ <!-- Run-time Analysis Section -->
506
+ <section class="section">
507
+ <div class="container is-max-desktop">
508
+ <h2 class="title is-3">Run-time Analysis</h2>
509
+ <div class="columns is-centered">
510
+ <div class="column container-centered">
511
+ <div>
512
+ <img src="./static/images/plot1.png"
513
+ class="method_overview"
514
+ alt="Run-time improvement comparison"/>
515
+ <p>
516
+ <strong>Figure 4.</strong> Run-time improvement (Retention Score over Visual and Text attacks).
517
+ </p>
518
+ <div class="content has-text-justified">
519
+ <p>
520
+ Figure 4 compares the run-time efficiency of Retention Score over adversarial attacks in [1] and [2].
521
+ We show the improvement ratio of their average per-sample run-time (wall clock time of Retention Score/Adversarial Attack is reported in Appendix)
522
+ and observe around 2-30 times improvement, validating the computational efficiency of Retention Score.
523
+ </p>
524
+ </div>
525
+ </div>
526
+ </div>
527
+ </div>
528
+ </div>
529
+ </section>
530
+ <!-- Run-time Analysis Section -->
531
+
532
 
533
 
534