Upload 2 files
Browse files- app.py +36 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Load your fine-tuned model from Hugging Face
|
5 |
+
MODEL_NAME = "Tryfonas/fine-tuned-bert-classifier-bds24" # Update with your Hugging Face model name
|
6 |
+
classifier = pipeline("text-classification", model=MODEL_NAME)
|
7 |
+
|
8 |
+
# Streamlit UI
|
9 |
+
st.title("BERT Text Classifier")
|
10 |
+
st.write("Enter text below to classify:")
|
11 |
+
|
12 |
+
# User input text
|
13 |
+
user_input = st.text_area("Input Text", "Type here...")
|
14 |
+
|
15 |
+
if st.button("Classify"):
|
16 |
+
if user_input.strip():
|
17 |
+
# Get model prediction
|
18 |
+
result = classifier(user_input)
|
19 |
+
|
20 |
+
# Extract label and confidence score
|
21 |
+
label = result[0]['label'] # Model output label
|
22 |
+
confidence = result[0]['score'] # Confidence score
|
23 |
+
|
24 |
+
# Convert model labels to "Positive" or "Negative"
|
25 |
+
if label == "LABEL_1": # Adjust based on your model's labeling
|
26 |
+
sentiment = "Positive 😊"
|
27 |
+
elif label == "LABEL_0":
|
28 |
+
sentiment = "Negative 😞"
|
29 |
+
else:
|
30 |
+
sentiment = "Unknown 🤔"
|
31 |
+
|
32 |
+
# Display results
|
33 |
+
st.subheader("Prediction:")
|
34 |
+
st.write(f"**Sentiment:** {sentiment}")
|
35 |
+
else:
|
36 |
+
st.warning("Please enter some text.")
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
transformers
|