import streamlit as st from transformers import pipeline # Load your fine-tuned model from Hugging Face MODEL_NAME = "Tryfonas/fine-tuned-bert-classifier-bds24" # Update with your Hugging Face model name classifier = pipeline("text-classification", model=MODEL_NAME) # Streamlit UI st.title("BERT Text Classifier") st.write("Enter text below to classify:") # User input text user_input = st.text_area("Input Text", "Type here...") if st.button("Classify"): if user_input.strip(): # Get model prediction result = classifier(user_input) # Extract label and confidence score label = result[0]['label'] # Model output label confidence = result[0]['score'] # Confidence score # Convert model labels to "Positive" or "Negative" if label == "LABEL_1": # Adjust based on your model's labeling sentiment = "Positive 😊" elif label == "LABEL_0": sentiment = "Negative 😞" else: sentiment = "Unknown 🤔" # Display results st.subheader("Prediction:") st.write(f"**Sentiment:** {sentiment}") else: st.warning("Please enter some text.")