Disable access to unofficial models
Browse files- app.py +0 -25
- constants.py +0 -10
app.py
CHANGED
@@ -5,9 +5,7 @@ from __future__ import annotations
|
|
5 |
import os
|
6 |
|
7 |
import gradio as gr
|
8 |
-
from huggingface_hub import HfApi
|
9 |
|
10 |
-
from constants import MODEL_LIBRARY_ORG_NAME
|
11 |
from inference import InferencePipeline
|
12 |
|
13 |
|
@@ -15,15 +13,6 @@ class InferenceUtil:
|
|
15 |
def __init__(self, hf_token: str | None):
|
16 |
self.hf_token = hf_token
|
17 |
|
18 |
-
def load_hub_model_list(self) -> dict:
|
19 |
-
api = HfApi(token=self.hf_token)
|
20 |
-
choices = [
|
21 |
-
info.modelId
|
22 |
-
for info in api.list_models(author=MODEL_LIBRARY_ORG_NAME)
|
23 |
-
]
|
24 |
-
return gr.update(choices=choices,
|
25 |
-
value=choices[0] if choices else None)
|
26 |
-
|
27 |
def load_model_info(self, model_id: str) -> tuple[str, str]:
|
28 |
try:
|
29 |
card = InferencePipeline.get_model_card(model_id, self.hf_token)
|
@@ -33,12 +22,6 @@ class InferenceUtil:
|
|
33 |
training_prompt = getattr(card.data, 'training_prompt', '')
|
34 |
return base_model, training_prompt
|
35 |
|
36 |
-
def reload_model_list_and_update_model_info(self) -> tuple[dict, str, str]:
|
37 |
-
model_list_update = self.load_hub_model_list()
|
38 |
-
model_list = model_list_update['choices']
|
39 |
-
model_info = self.load_model_info(model_list[0] if model_list else '')
|
40 |
-
return model_list_update, *model_info
|
41 |
-
|
42 |
|
43 |
TITLE = '# [Tune-A-Video](https://tuneavideo.github.io/)'
|
44 |
HF_TOKEN = os.getenv('HF_TOKEN')
|
@@ -51,7 +34,6 @@ with gr.Blocks(css='style.css') as demo:
|
|
51 |
with gr.Row():
|
52 |
with gr.Column():
|
53 |
with gr.Box():
|
54 |
-
reload_button = gr.Button('Reload Model List')
|
55 |
model_id = gr.Dropdown(
|
56 |
label='Model ID',
|
57 |
choices=[
|
@@ -214,13 +196,6 @@ with gr.Blocks(css='style.css') as demo:
|
|
214 |
fn=pipe.run,
|
215 |
cache_examples=True)
|
216 |
|
217 |
-
reload_button.click(fn=app.reload_model_list_and_update_model_info,
|
218 |
-
inputs=None,
|
219 |
-
outputs=[
|
220 |
-
model_id,
|
221 |
-
base_model_used_for_training,
|
222 |
-
prompt_used_for_training,
|
223 |
-
])
|
224 |
model_id.change(fn=app.load_model_info,
|
225 |
inputs=model_id,
|
226 |
outputs=[
|
|
|
5 |
import os
|
6 |
|
7 |
import gradio as gr
|
|
|
8 |
|
|
|
9 |
from inference import InferencePipeline
|
10 |
|
11 |
|
|
|
13 |
def __init__(self, hf_token: str | None):
|
14 |
self.hf_token = hf_token
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def load_model_info(self, model_id: str) -> tuple[str, str]:
|
17 |
try:
|
18 |
card = InferencePipeline.get_model_card(model_id, self.hf_token)
|
|
|
22 |
training_prompt = getattr(card.data, 'training_prompt', '')
|
23 |
return base_model, training_prompt
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
TITLE = '# [Tune-A-Video](https://tuneavideo.github.io/)'
|
27 |
HF_TOKEN = os.getenv('HF_TOKEN')
|
|
|
34 |
with gr.Row():
|
35 |
with gr.Column():
|
36 |
with gr.Box():
|
|
|
37 |
model_id = gr.Dropdown(
|
38 |
label='Model ID',
|
39 |
choices=[
|
|
|
196 |
fn=pipe.run,
|
197 |
cache_examples=True)
|
198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
model_id.change(fn=app.load_model_info,
|
200 |
inputs=model_id,
|
201 |
outputs=[
|
constants.py
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
import enum
|
2 |
-
|
3 |
-
|
4 |
-
class UploadTarget(enum.Enum):
|
5 |
-
PERSONAL_PROFILE = 'Personal Profile'
|
6 |
-
MODEL_LIBRARY = 'Tune-A-Video Library'
|
7 |
-
|
8 |
-
|
9 |
-
MODEL_LIBRARY_ORG_NAME = 'Tune-A-Video-library'
|
10 |
-
SAMPLE_MODEL_REPO = 'Tune-A-Video-library/a-man-is-surfing'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|