Spaces:
Sleeping
Sleeping
ayoubkirouane
commited on
Commit
·
5c4a425
1
Parent(s):
7624210
Update app.py
Browse files
app.py
CHANGED
@@ -1,43 +1,32 @@
|
|
1 |
import torch
|
2 |
from transformers import pipeline
|
3 |
-
|
4 |
from PIL import Image
|
5 |
-
|
6 |
import matplotlib.pyplot as plt
|
7 |
-
|
8 |
-
from random import choice
|
9 |
import io
|
10 |
|
11 |
detector50 = pipeline(model="TuningAI/DETR-BASE_Marine")
|
12 |
|
13 |
import gradio as gr
|
14 |
|
15 |
-
COLORS = ["#ff7f7f", "#ff7fbf", "#ff7fff", "#bf7fff",
|
16 |
-
"#7f7fff", "#7fbfff", "#7fffff", "#7fffbf",
|
17 |
-
"#7fff7f", "#bfff7f", "#ffff7f", "#ffbf7f"]
|
18 |
-
|
19 |
fdic = {
|
20 |
-
"family" : "Impact",
|
21 |
"style" : "italic",
|
22 |
"size" : 10,
|
23 |
"color" : "red",
|
24 |
"weight" : "bold"
|
25 |
}
|
26 |
-
|
27 |
-
|
28 |
def get_figure(in_pil_img, in_results):
|
29 |
plt.figure(figsize=(16, 10))
|
30 |
plt.imshow(in_pil_img)
|
31 |
ax = plt.gca()
|
32 |
|
33 |
for prediction in in_results:
|
34 |
-
selected_color =
|
35 |
|
36 |
x, y = prediction['box']['xmin'], prediction['box']['ymin'],
|
37 |
w, h = prediction['box']['xmax'] - prediction['box']['xmin'], prediction['box']['ymax'] - prediction['box']['ymin']
|
38 |
-
|
39 |
ax.add_patch(plt.Rectangle((x, y), w, h, fill=False, color=selected_color, linewidth=3))
|
40 |
-
ax.text(x, y, f"{prediction['label']}: {round(prediction['score']*100, 1)}%", fontdict=fdic)
|
41 |
|
42 |
plt.axis("off")
|
43 |
|
@@ -61,6 +50,6 @@ with gr.Blocks(title="DETR Object Detection") as demo:
|
|
61 |
with gr.Row():
|
62 |
input_image = gr.Image(label="Input image", type="pil")
|
63 |
output_image = gr.Image(label="Output image with predicted instances", type="pil")
|
64 |
-
send_btn = gr.Button("
|
65 |
send_btn.click(fn=infer, inputs=input_image, outputs=[output_image])
|
66 |
demo.launch(debug=True)
|
|
|
1 |
import torch
|
2 |
from transformers import pipeline
|
|
|
3 |
from PIL import Image
|
|
|
4 |
import matplotlib.pyplot as plt
|
|
|
|
|
5 |
import io
|
6 |
|
7 |
detector50 = pipeline(model="TuningAI/DETR-BASE_Marine")
|
8 |
|
9 |
import gradio as gr
|
10 |
|
|
|
|
|
|
|
|
|
11 |
fdic = {
|
|
|
12 |
"style" : "italic",
|
13 |
"size" : 10,
|
14 |
"color" : "red",
|
15 |
"weight" : "bold"
|
16 |
}
|
17 |
+
labels_ = { "LABEL_0":"None" , "LABEL_1": "Boat" ,"LABEL_2": "Car" ,"LABEL_3" : "Dock" , "LABEL_4" : "Jetski" ,"LABEL_5" : "Lift"}
|
|
|
18 |
def get_figure(in_pil_img, in_results):
|
19 |
plt.figure(figsize=(16, 10))
|
20 |
plt.imshow(in_pil_img)
|
21 |
ax = plt.gca()
|
22 |
|
23 |
for prediction in in_results:
|
24 |
+
selected_color ="#008000"
|
25 |
|
26 |
x, y = prediction['box']['xmin'], prediction['box']['ymin'],
|
27 |
w, h = prediction['box']['xmax'] - prediction['box']['xmin'], prediction['box']['ymax'] - prediction['box']['ymin']
|
|
|
28 |
ax.add_patch(plt.Rectangle((x, y), w, h, fill=False, color=selected_color, linewidth=3))
|
29 |
+
ax.text(x, y, f"{labels_[prediction['label']]}: {round(prediction['score']*100, 1)}%", fontdict=fdic)
|
30 |
|
31 |
plt.axis("off")
|
32 |
|
|
|
50 |
with gr.Row():
|
51 |
input_image = gr.Image(label="Input image", type="pil")
|
52 |
output_image = gr.Image(label="Output image with predicted instances", type="pil")
|
53 |
+
send_btn = gr.Button("start")
|
54 |
send_btn.click(fn=infer, inputs=input_image, outputs=[output_image])
|
55 |
demo.launch(debug=True)
|