TuringsSolutions commited on
Commit
4a4d842
·
verified ·
1 Parent(s): 65f43ad

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -13
app.py CHANGED
@@ -6,7 +6,7 @@ from keras.models import Model
6
  import matplotlib.pyplot as plt
7
  import logging
8
  from skimage.transform import resize
9
- from PIL import Image, ImageEnhance, ImageFilter
10
  from tqdm import tqdm
11
 
12
  class SwarmAgent:
@@ -19,7 +19,7 @@ class SwarmAgent:
19
  class SwarmNeuralNetwork:
20
  def __init__(self, num_agents, image_shape, target_image):
21
  self.image_shape = image_shape
22
- self.resized_shape = (128, 128, 3) # Increased resolution
23
  self.agents = [SwarmAgent(self.random_position(), self.random_velocity()) for _ in range(num_agents)]
24
  self.target_image = self.load_target_image(target_image)
25
  self.generated_image = np.random.randn(*image_shape) # Start with noise
@@ -102,12 +102,6 @@ class SwarmNeuralNetwork:
102
  # Normalize to [0, 1] range for display
103
  self.generated_image = (self.generated_image + 1) / 2
104
  self.generated_image = np.clip(self.generated_image, 0, 1)
105
-
106
- # Apply sharpening filter
107
- image_pil = Image.fromarray((self.generated_image * 255).astype(np.uint8))
108
- image_pil = image_pil.filter(ImageFilter.SHARPEN)
109
- image_pil = image_pil.filter(ImageFilter.DETAIL)
110
- self.generated_image = np.array(image_pil) / 255.0
111
 
112
  def train(self, epochs):
113
  logging.basicConfig(filename='training.log', level=logging.INFO)
@@ -162,9 +156,19 @@ class SwarmNeuralNetwork:
162
  self.generate_image()
163
  return self.generated_image
164
 
 
 
 
 
 
 
 
 
 
 
165
  # Gradio Interface
166
  def train_snn(image, num_agents, epochs, brightness, contrast, color):
167
- snn = SwarmNeuralNetwork(num_agents=num_agents, image_shape=(128, 128, 3), target_image=image)
168
 
169
  # Apply user-specified adjustments to the target image
170
  image = ImageEnhance.Brightness(image).enhance(brightness)
@@ -174,13 +178,16 @@ def train_snn(image, num_agents, epochs, brightness, contrast, color):
174
  snn.target_image = snn.load_target_image(image)
175
  snn.train(epochs=epochs)
176
  snn.save_model('snn_model.npy')
177
- return snn.generated_image
 
 
178
 
179
  def generate_new_image():
180
- snn = SwarmNeuralNetwork(num_agents=2000, image_shape=(128, 128, 3), target_image=None)
181
  snn.load_model('snn_model.npy')
182
  new_image = snn.generate_new_image()
183
- return new_image
 
184
 
185
  interface = gr.Interface(
186
  fn=train_snn,
@@ -197,4 +204,4 @@ interface = gr.Interface(
197
  description="Upload an image and set the number of agents and epochs to train the Swarm Neural Network to generate a new image. Adjust brightness, contrast, and color balance for personalization."
198
  )
199
 
200
- interface.launch()
 
6
  import matplotlib.pyplot as plt
7
  import logging
8
  from skimage.transform import resize
9
+ from PIL import Image, ImageEnhance
10
  from tqdm import tqdm
11
 
12
  class SwarmAgent:
 
19
  class SwarmNeuralNetwork:
20
  def __init__(self, num_agents, image_shape, target_image):
21
  self.image_shape = image_shape
22
+ self.resized_shape = (256, 256, 3) # Increased resolution
23
  self.agents = [SwarmAgent(self.random_position(), self.random_velocity()) for _ in range(num_agents)]
24
  self.target_image = self.load_target_image(target_image)
25
  self.generated_image = np.random.randn(*image_shape) # Start with noise
 
102
  # Normalize to [0, 1] range for display
103
  self.generated_image = (self.generated_image + 1) / 2
104
  self.generated_image = np.clip(self.generated_image, 0, 1)
 
 
 
 
 
 
105
 
106
  def train(self, epochs):
107
  logging.basicConfig(filename='training.log', level=logging.INFO)
 
156
  self.generate_image()
157
  return self.generated_image
158
 
159
+ def apply_super_resolution(self, image):
160
+ import cv2
161
+ sr = cv2.dnn_superres.DnnSuperResImpl_create()
162
+ path = "EDSR_x3.pb" # Path to a pre-trained super-resolution model file (download it from OpenCV's repository)
163
+ sr.readModel(path)
164
+ sr.setModel("edsr", 3) # Use EDSR model with a scale factor of 3
165
+ image = (image * 255).astype(np.uint8)
166
+ upscaled = sr.upsample(image)
167
+ return upscaled / 255.0
168
+
169
  # Gradio Interface
170
  def train_snn(image, num_agents, epochs, brightness, contrast, color):
171
+ snn = SwarmNeuralNetwork(num_agents=num_agents, image_shape=(256, 256, 3), target_image=image)
172
 
173
  # Apply user-specified adjustments to the target image
174
  image = ImageEnhance.Brightness(image).enhance(brightness)
 
178
  snn.target_image = snn.load_target_image(image)
179
  snn.train(epochs=epochs)
180
  snn.save_model('snn_model.npy')
181
+ generated_image = snn.generated_image
182
+ upscaled_image = snn.apply_super_resolution(generated_image)
183
+ return upscaled_image
184
 
185
  def generate_new_image():
186
+ snn = SwarmNeuralNetwork(num_agents=2000, image_shape=(256, 256, 3), target_image=None)
187
  snn.load_model('snn_model.npy')
188
  new_image = snn.generate_new_image()
189
+ upscaled_image = snn.apply_super_resolution(new_image)
190
+ return upscaled_image
191
 
192
  interface = gr.Interface(
193
  fn=train_snn,
 
204
  description="Upload an image and set the number of agents and epochs to train the Swarm Neural Network to generate a new image. Adjust brightness, contrast, and color balance for personalization."
205
  )
206
 
207
+ interface.launch()