Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,7 @@ from keras.models import Model
|
|
6 |
import matplotlib.pyplot as plt
|
7 |
import logging
|
8 |
from skimage.transform import resize
|
9 |
-
from PIL import Image, ImageEnhance
|
10 |
from tqdm import tqdm
|
11 |
|
12 |
class SwarmAgent:
|
@@ -19,7 +19,7 @@ class SwarmAgent:
|
|
19 |
class SwarmNeuralNetwork:
|
20 |
def __init__(self, num_agents, image_shape, target_image):
|
21 |
self.image_shape = image_shape
|
22 |
-
self.resized_shape = (
|
23 |
self.agents = [SwarmAgent(self.random_position(), self.random_velocity()) for _ in range(num_agents)]
|
24 |
self.target_image = self.load_target_image(target_image)
|
25 |
self.generated_image = np.random.randn(*image_shape) # Start with noise
|
@@ -102,12 +102,6 @@ class SwarmNeuralNetwork:
|
|
102 |
# Normalize to [0, 1] range for display
|
103 |
self.generated_image = (self.generated_image + 1) / 2
|
104 |
self.generated_image = np.clip(self.generated_image, 0, 1)
|
105 |
-
|
106 |
-
# Apply sharpening filter
|
107 |
-
image_pil = Image.fromarray((self.generated_image * 255).astype(np.uint8))
|
108 |
-
image_pil = image_pil.filter(ImageFilter.SHARPEN)
|
109 |
-
image_pil = image_pil.filter(ImageFilter.DETAIL)
|
110 |
-
self.generated_image = np.array(image_pil) / 255.0
|
111 |
|
112 |
def train(self, epochs):
|
113 |
logging.basicConfig(filename='training.log', level=logging.INFO)
|
@@ -162,9 +156,19 @@ class SwarmNeuralNetwork:
|
|
162 |
self.generate_image()
|
163 |
return self.generated_image
|
164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
# Gradio Interface
|
166 |
def train_snn(image, num_agents, epochs, brightness, contrast, color):
|
167 |
-
snn = SwarmNeuralNetwork(num_agents=num_agents, image_shape=(
|
168 |
|
169 |
# Apply user-specified adjustments to the target image
|
170 |
image = ImageEnhance.Brightness(image).enhance(brightness)
|
@@ -174,13 +178,16 @@ def train_snn(image, num_agents, epochs, brightness, contrast, color):
|
|
174 |
snn.target_image = snn.load_target_image(image)
|
175 |
snn.train(epochs=epochs)
|
176 |
snn.save_model('snn_model.npy')
|
177 |
-
|
|
|
|
|
178 |
|
179 |
def generate_new_image():
|
180 |
-
snn = SwarmNeuralNetwork(num_agents=2000, image_shape=(
|
181 |
snn.load_model('snn_model.npy')
|
182 |
new_image = snn.generate_new_image()
|
183 |
-
|
|
|
184 |
|
185 |
interface = gr.Interface(
|
186 |
fn=train_snn,
|
@@ -197,4 +204,4 @@ interface = gr.Interface(
|
|
197 |
description="Upload an image and set the number of agents and epochs to train the Swarm Neural Network to generate a new image. Adjust brightness, contrast, and color balance for personalization."
|
198 |
)
|
199 |
|
200 |
-
interface.launch()
|
|
|
6 |
import matplotlib.pyplot as plt
|
7 |
import logging
|
8 |
from skimage.transform import resize
|
9 |
+
from PIL import Image, ImageEnhance
|
10 |
from tqdm import tqdm
|
11 |
|
12 |
class SwarmAgent:
|
|
|
19 |
class SwarmNeuralNetwork:
|
20 |
def __init__(self, num_agents, image_shape, target_image):
|
21 |
self.image_shape = image_shape
|
22 |
+
self.resized_shape = (256, 256, 3) # Increased resolution
|
23 |
self.agents = [SwarmAgent(self.random_position(), self.random_velocity()) for _ in range(num_agents)]
|
24 |
self.target_image = self.load_target_image(target_image)
|
25 |
self.generated_image = np.random.randn(*image_shape) # Start with noise
|
|
|
102 |
# Normalize to [0, 1] range for display
|
103 |
self.generated_image = (self.generated_image + 1) / 2
|
104 |
self.generated_image = np.clip(self.generated_image, 0, 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
def train(self, epochs):
|
107 |
logging.basicConfig(filename='training.log', level=logging.INFO)
|
|
|
156 |
self.generate_image()
|
157 |
return self.generated_image
|
158 |
|
159 |
+
def apply_super_resolution(self, image):
|
160 |
+
import cv2
|
161 |
+
sr = cv2.dnn_superres.DnnSuperResImpl_create()
|
162 |
+
path = "EDSR_x3.pb" # Path to a pre-trained super-resolution model file (download it from OpenCV's repository)
|
163 |
+
sr.readModel(path)
|
164 |
+
sr.setModel("edsr", 3) # Use EDSR model with a scale factor of 3
|
165 |
+
image = (image * 255).astype(np.uint8)
|
166 |
+
upscaled = sr.upsample(image)
|
167 |
+
return upscaled / 255.0
|
168 |
+
|
169 |
# Gradio Interface
|
170 |
def train_snn(image, num_agents, epochs, brightness, contrast, color):
|
171 |
+
snn = SwarmNeuralNetwork(num_agents=num_agents, image_shape=(256, 256, 3), target_image=image)
|
172 |
|
173 |
# Apply user-specified adjustments to the target image
|
174 |
image = ImageEnhance.Brightness(image).enhance(brightness)
|
|
|
178 |
snn.target_image = snn.load_target_image(image)
|
179 |
snn.train(epochs=epochs)
|
180 |
snn.save_model('snn_model.npy')
|
181 |
+
generated_image = snn.generated_image
|
182 |
+
upscaled_image = snn.apply_super_resolution(generated_image)
|
183 |
+
return upscaled_image
|
184 |
|
185 |
def generate_new_image():
|
186 |
+
snn = SwarmNeuralNetwork(num_agents=2000, image_shape=(256, 256, 3), target_image=None)
|
187 |
snn.load_model('snn_model.npy')
|
188 |
new_image = snn.generate_new_image()
|
189 |
+
upscaled_image = snn.apply_super_resolution(new_image)
|
190 |
+
return upscaled_image
|
191 |
|
192 |
interface = gr.Interface(
|
193 |
fn=train_snn,
|
|
|
204 |
description="Upload an image and set the number of agents and epochs to train the Swarm Neural Network to generate a new image. Adjust brightness, contrast, and color balance for personalization."
|
205 |
)
|
206 |
|
207 |
+
interface.launch()
|