|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
import gradio as gr |
|
import torch |
|
from peft import PeftConfig, PeftModel |
|
|
|
|
|
PEFT_MODEL = "TurtleLiu/mistral7b_psychology_bot" |
|
|
|
config = PeftConfig.from_pretrained(PEFT_MODEL) |
|
|
|
bnb_config = BitsAndBytesConfig( |
|
load_in_4bit= True, |
|
bnb_4bit_quant_type= "nf4", |
|
bnb_4bit_compute_dtype= torch.bfloat16, |
|
bnb_4bit_use_double_quant= False, |
|
) |
|
|
|
peft_base_model = AutoModelForCausalLM.from_pretrained( |
|
config.base_model_name_or_path, |
|
return_dict=True, |
|
quantization_config=bnb_config, |
|
device_map="auto", |
|
trust_remote_code=True, |
|
) |
|
|
|
model = PeftModel.from_pretrained(peft_base_model, PEFT_MODEL) |
|
model = model.merge_and_unload() |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path, trust_remote_code=True) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
tokenizer.padding_side = "right" |
|
|
|
|
|
|
|
def format_prompt(message, history): |
|
prompt = "<s>" |
|
for user_prompt, bot_response in history: |
|
prompt += f"[INST] {user_prompt} [/INST]" |
|
prompt += f" {bot_response}</s> " |
|
prompt += f"[INST] {message} [/INST]" |
|
return prompt |
|
|
|
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200, do_sample=True, |
|
max_new_tokens=1024, |
|
temperature=0.9, |
|
top_k=50, |
|
top_p=0.95, |
|
num_return_sequences=1) |
|
|
|
def generate_response(message, history): |
|
prompt = "<s>" |
|
for user_prompt, bot_response in history: |
|
prompt += f"[INST] {user_prompt} [/INST]" |
|
prompt += f" {bot_response}</s> " |
|
prompt += f"[INST] {message} [/INST]" |
|
result = pipe(f"{prompt}")[0]['generated_text'] |
|
return result |
|
|
|
''' |
|
def generate_response(prompt, history, temperature=0.9, max_new_tokens=1024, top_p=0.95, repetition_penalty=1.0, **kwargs,): |
|
temperature = float(temperature) |
|
if temperature < 1e-2: |
|
temperature = 1e-2 |
|
top_p = float(top_p) |
|
|
|
generate_kwargs = dict( |
|
temperature=temperature, |
|
max_new_tokens=max_new_tokens, |
|
top_p=top_p, |
|
repetition_penalty=repetition_penalty, |
|
do_sample=True, |
|
seed=42, |
|
) |
|
runtimeFlag = "cuda:0" |
|
formatted_prompt = format_prompt(f"{prompt}", history) |
|
inputs = tokenizer([formatted_prompt], return_tensors="pt").to(runtimeFlag) |
|
generation_config = GenerationConfig( |
|
temperature=temperature, |
|
top_p=top_p, |
|
max_new_tokens=max_new_tokens, |
|
repetition_penalty=repetition_penalty, |
|
do_sample=True, |
|
**kwargs, |
|
) |
|
generation_output = model.generate( |
|
**inputs, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_new_tokens=max_new_tokens, |
|
) |
|
''' |
|
|
|
|
|
examples=[ |
|
["Patient is feeling stressed due to work and has trouble sleeping.", None, None, None, None, None], |
|
["Client is dealing with relationship issues and is seeking advice on communication strategies.", None, None, None, None, None], |
|
["Individual has recently experienced a loss and is having difficulty coping with grief.", None, None, None, None, None], |
|
] |
|
|
|
gr.ChatInterface( |
|
fn=generate_response, |
|
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), |
|
title="Psychological Assistant: Expert in Assessment and Strategic Planning", |
|
description="Enter counseling notes to generate an assessment and plan.", |
|
examples=examples, |
|
concurrency_limit=20, |
|
).launch(show_api=False, debug=True) |
|
|
|
|
|
''' |
|
from huggingface_hub import InferenceClient |
|
import gradio as gr |
|
|
|
client = InferenceClient( |
|
"TurtleLiu/mistral7b_psychology_bot" |
|
) |
|
|
|
|
|
def format_prompt(message, history): |
|
prompt = "<s>" |
|
for user_prompt, bot_response in history: |
|
prompt += f"[INST] {user_prompt} [/INST]" |
|
prompt += f" {bot_response}</s> " |
|
prompt += f"[INST] {message} [/INST]" |
|
return prompt |
|
|
|
|
|
|
|
def format_prompt(message, history): |
|
prompt = "<s>" |
|
for user_prompt, bot_response in history: |
|
prompt += f"[INST] {user_prompt} [/INST]" |
|
prompt += f" {bot_response}</s> " |
|
prompt += f"[INST] As a psychology counselor assistant, provide an assessment and plan for the following counseling notes. Please present a summary, don't make it so long. Present in lines.: {message} [/INST]" |
|
return prompt |
|
|
|
|
|
def generate( |
|
prompt, history, temperature=0.9, max_new_tokens=1024, top_p=0.95, repetition_penalty=1.0, |
|
): |
|
temperature = float(temperature) |
|
if temperature < 1e-2: |
|
temperature = 1e-2 |
|
top_p = float(top_p) |
|
|
|
generate_kwargs = dict( |
|
temperature=temperature, |
|
max_new_tokens=max_new_tokens, |
|
top_p=top_p, |
|
repetition_penalty=repetition_penalty, |
|
do_sample=True, |
|
seed=42, |
|
) |
|
|
|
formatted_prompt = format_prompt(f"{prompt}", history) |
|
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) |
|
output = "" |
|
|
|
for response in stream: |
|
output += response.token.text |
|
yield output |
|
return output |
|
|
|
|
|
examples=[ |
|
["Patient is feeling stressed due to work and has trouble sleeping.", None, None, None, None, None], |
|
["Client is dealing with relationship issues and is seeking advice on communication strategies.", None, None, None, None, None], |
|
["Individual has recently experienced a loss and is having difficulty coping with grief.", None, None, None, None, None], |
|
] |
|
|
|
gr.ChatInterface( |
|
fn=generate, |
|
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), |
|
title="Psychological Assistant: Expert in Assessment and Strategic Planning", |
|
description="Enter counseling notes to generate an assessment and plan.", |
|
examples=examples, |
|
concurrency_limit=20, |
|
).launch(show_api=False, debug=True) |
|
''' |