import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("TwentyNine/byt5-ain-kana-latin-converter-v1") model = AutoModelForSeq2SeqLM.from_pretrained("TwentyNine/byt5-ain-kana-latin-converter-v1") def transcribe(input_str): output_str = '' for input in input_str.split(separator='\n'): input_enc = tokenizer.encode(input_str.strip(), return_tensors='pt') output_enc = model.generate(input_enc, max_length=256) if len(output_str) > 0: output_str = output_str + '\n' output_str = output_str + tokenizer.decode(output_enc[0], skip_special_tokens=True) return tokenizer.decode(output_enc[0], skip_special_tokens=True) gradio_app = gr.Interface( transcribe, inputs=gr.Textbox(label='Input (kana)', value='トゥイマ ヒ ワ エエㇰ ワ ヒオーイオイ。ピㇼカノ ヌカㇻ ヤン!', placeholder='トゥイマ ヒ ワ エエㇰ ワ ヒオーイオイ。ピㇼカノ ヌカㇻ ヤン!', info='Ainu text written in Japanese katakana (input).', interactive=True, autofocus=True), outputs=gr.Textbox(label='Output (alphabet)', info='Ainu text written in the Latin alphabet (output).'), title='BYT5 Ainu Kana-Latin Converter (V1)', article='
Example sentence borrowed from New Express Ainu-go (ニューエクスプレスプラス アイヌ語) by NAKAGAWA Hiroshi"
' ) if __name__ == "__main__": gradio_app.launch()