import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("TwentyNine/byt5-ain-kana-latin-converter-v1") model = AutoModelForSeq2SeqLM.from_pretrained("TwentyNine/byt5-ain-kana-latin-converter-v1") def transcribe(input_str): input_enc = tokenizer.encode(input_str, return_tensors='pt') output_enc = model.generate(input_enc, max_length=256) return tokenizer.decode(output_enc[0], skip_special_tokens=True) gradio_app = gr.Interface( transcribe, inputs=gr.Textbox(label='Input (kana)', value='', placeholder='', info='Ainu text written in Japanese katakana (input).', interactive=True, autofocus=True), outputs=gr.Textbox(label='Output (alphabet)', info='Ainu text written in the Latin alphabet (output).'), title="BYT5 Ainu Kana-Latin Converter (V1)", ) if __name__ == "__main__": gradio_app.launch(share=True)