Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# importing the necessary library
|
2 |
+
import re
|
3 |
+
import math
|
4 |
+
|
5 |
+
import spacy
|
6 |
+
import nltk
|
7 |
+
from nltk.tokenize import sent_tokenize
|
8 |
+
nltk.download('punkt')
|
9 |
+
|
10 |
+
import gradio as gr
|
11 |
+
|
12 |
+
from transformers import pipeline
|
13 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
14 |
+
|
15 |
+
from transformers import BartTokenizer, BartForConditionalGeneration
|
16 |
+
|
17 |
+
|
18 |
+
# initailizing the model pipeline
|
19 |
+
model = BartForConditionalGeneration.from_pretrained("sshleifer/distilbart-cnn-12-6")
|
20 |
+
tokenizer = BartTokenizer.from_pretrained("sshleifer/distilbart-cnn-12-6")
|
21 |
+
nlp = spacy.load("en_core_web_sm")
|
22 |
+
|
23 |
+
|
24 |
+
def clean_text(text):
|
25 |
+
text = text
|
26 |
+
text = text.encode("ascii", errors="ignore").decode(
|
27 |
+
"ascii"
|
28 |
+
) # remove non-ascii, Chinese characters
|
29 |
+
|
30 |
+
text = re.sub(r"\n", " ", text)
|
31 |
+
text = re.sub(r"\n\n", " ", text)
|
32 |
+
text = re.sub(r"\t", " ", text)
|
33 |
+
text = text.strip(" ")
|
34 |
+
text = re.sub(
|
35 |
+
" +", " ", text
|
36 |
+
).strip() # get rid of multiple spaces and replace with a single
|
37 |
+
return text
|
38 |
+
|
39 |
+
|
40 |
+
# Defining a function to get the summary of the article
|
41 |
+
def final_summary(text):
|
42 |
+
# reading in the text and tokenizing it into sentence
|
43 |
+
text = text
|
44 |
+
bullet_points = 10
|
45 |
+
|
46 |
+
while (bullet_points >= 10):
|
47 |
+
|
48 |
+
chunks = []
|
49 |
+
sentences = nlp(text)
|
50 |
+
for sentence in sentences.sents:
|
51 |
+
chunks.append(str(sentence))
|
52 |
+
|
53 |
+
output = []
|
54 |
+
sentences_remaining = len(chunks)
|
55 |
+
i = 0
|
56 |
+
|
57 |
+
#looping through the sentences in an equal batch based on their length and summarizing them
|
58 |
+
while sentences_remaining > 0:
|
59 |
+
chunks_remaining = math.ceil(sentences_remaining / 10.0)
|
60 |
+
next_chunk_size = math.ceil(sentences_remaining / chunks_remaining)
|
61 |
+
sentence = "".join(chunks[i:i+next_chunk_size])
|
62 |
+
|
63 |
+
i += next_chunk_size
|
64 |
+
sentences_remaining -= next_chunk_size
|
65 |
+
|
66 |
+
inputs = tokenizer(sentence, return_tensors="pt", padding="longest")
|
67 |
+
#inputs = inputs.to(DEVICE)
|
68 |
+
original_input_length = len(inputs["input_ids"][0])
|
69 |
+
|
70 |
+
# checking if the length of the input batch is less than 150
|
71 |
+
if original_input_length < 100:
|
72 |
+
split_sentences = nlp(sentence)
|
73 |
+
for split_sentence in split_sentences.sents:
|
74 |
+
output.append(str(split_sentence).rstrip("."))
|
75 |
+
|
76 |
+
|
77 |
+
# checking if the length of the input batch is greater than 1024
|
78 |
+
elif original_input_length > 1024:
|
79 |
+
sent = sent_tokenize(sentence)
|
80 |
+
length_sent = len(sent)
|
81 |
+
|
82 |
+
j = 0
|
83 |
+
sent_remaining = math.ceil(length_sent / 2)
|
84 |
+
|
85 |
+
# going through the batch that is greater than 1024 and dividing them
|
86 |
+
while length_sent > 0:
|
87 |
+
halved_sentence = "".join(sent[j:j+sent_remaining])
|
88 |
+
halved_inputs = tokenizer(halved_sentence, return_tensors="pt")
|
89 |
+
#halved_inputs = halved_inputs.to(DEVICE)
|
90 |
+
halved_summary_ids = model.generate(halved_inputs["input_ids"])
|
91 |
+
j += sent_remaining
|
92 |
+
length_sent -= sent_remaining
|
93 |
+
|
94 |
+
# checking if the length of the output summary is less than the original text
|
95 |
+
if len(halved_summary_ids[0]) < len(halved_inputs["input_ids"][0]):
|
96 |
+
halved_summary = tokenizer.batch_decode(halved_summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
97 |
+
output.append(halved_summary)
|
98 |
+
|
99 |
+
else:
|
100 |
+
summary_ids = model.generate(inputs["input_ids"])
|
101 |
+
|
102 |
+
if len(summary_ids[0]) < original_input_length:
|
103 |
+
summary = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
104 |
+
output.append(summary)
|
105 |
+
|
106 |
+
final_output = []
|
107 |
+
for paragraphs in output:
|
108 |
+
lines = paragraphs.split(" . ")
|
109 |
+
for line in lines:
|
110 |
+
final_output.append(line.replace(" .", "").strip())
|
111 |
+
text = ".".join(final_output)
|
112 |
+
bullet_points = len(final_output)
|
113 |
+
|
114 |
+
|
115 |
+
for i in range(len(final_output)):
|
116 |
+
final_output[i] = "* " + final_output[i] + "."
|
117 |
+
|
118 |
+
# final sentences are incoherent, so we will join them by bullet separator
|
119 |
+
summary_bullet = "\n".join(final_output)
|
120 |
+
|
121 |
+
return summary_bullet
|
122 |
+
|
123 |
+
# creating an interface for the headline generator using gradio
|
124 |
+
demo = gr.Interface(final_summary, inputs=[gr.Textbox(label="Drop your article here")],
|
125 |
+
title = "chatgptbots.net | ARTICLE SUMMARIZER",
|
126 |
+
outputs=[gr.Textbox(label="Summary")],
|
127 |
+
)
|
128 |
+
|
129 |
+
# launching the app
|
130 |
+
if __name__ == "__main__":
|
131 |
+
demo.launch(debug=True)
|