Niansuh commited on
Commit
c8b999a
·
verified ·
1 Parent(s): 03b4aeb

Upload 4 files

Browse files
Files changed (4) hide show
  1. app.py +35 -71
  2. red_car.png +0 -0
  3. requirements.txt +3 -2
  4. supercar.png +0 -0
app.py CHANGED
@@ -10,7 +10,13 @@ from diffusers import StableDiffusionXLPipeline, EDMEulerScheduler, StableDiffus
10
  from custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline
11
  from huggingface_hub import hf_hub_download
12
  from huggingface_hub import InferenceClient
 
13
 
 
 
 
 
 
14
 
15
  help_text = """
16
  To optimize image results:
@@ -37,47 +43,19 @@ def set_timesteps_patched(self, num_inference_steps: int, device = None):
37
 
38
  # Image Editor
39
  edit_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors")
40
- normal_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl.safetensors")
41
-
42
  EDMEulerScheduler.set_timesteps = set_timesteps_patched
43
-
44
  vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
45
-
46
  pipe_edit = StableDiffusionXLInstructPix2PixPipeline.from_single_file(
47
  edit_file, num_in_channels=8, is_cosxl_edit=True, vae=vae, torch_dtype=torch.float16,
48
  )
49
  pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
50
  pipe_edit.to("cuda")
51
 
52
- from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
53
-
54
- if not torch.cuda.is_available():
55
- DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>"
56
-
57
- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
58
-
59
-
60
- # Image Generator
61
- if torch.cuda.is_available():
62
- pipe = StableDiffusionXLPipeline.from_pretrained(
63
- "fluently/Fluently-XL-v4",
64
- torch_dtype=torch.float16,
65
- use_safetensors=True,
66
- )
67
- pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
68
- pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
69
- pipe.set_adapters("dalle")
70
-
71
- def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
72
- if randomize_seed:
73
- seed = random.randint(0, 999999)
74
- return seed
75
-
76
  # Generator
77
  @spaces.GPU(duration=30, queue=False)
78
- def king(type = "Image Generation",
79
- input_image = None,
80
- instruction: str = "Eiffel tower",
81
  steps: int = 8,
82
  randomize_seed: bool = False,
83
  seed: int = 25,
@@ -85,12 +63,13 @@ def king(type = "Image Generation",
85
  image_cfg_scale: float = 1.7,
86
  width: int = 1024,
87
  height: int = 1024,
88
- guidance_scale: float = 6.2,
89
  use_resolution_binning: bool = True,
90
  progress=gr.Progress(track_tqdm=True),
91
  ):
92
  if type=="Image Editing" :
93
- seed = int(randomize_seed_fn(seed, randomize_seed))
 
94
  text_cfg_scale = text_cfg_scale
95
  image_cfg_scale = image_cfg_scale
96
  input_image = input_image
@@ -103,49 +82,34 @@ def king(type = "Image Generation",
103
  num_inference_steps=steps, generator=generator).images[0]
104
  return seed, output_image
105
  else :
106
- pipe.to(device)
107
- seed = int(randomize_seed_fn(seed, randomize_seed))
108
- generator = torch.Generator().manual_seed(seed)
109
-
110
- options = {
111
- "prompt":instruction,
112
- "width":width,
113
- "height":height,
114
- "guidance_scale":guidance_scale,
115
- "num_inference_steps":steps,
116
- "generator":generator,
117
- "use_resolution_binning":use_resolution_binning,
118
- "output_type":"pil",
119
- }
120
-
121
- output_image = pipe(**options).images[0]
122
- return seed, output_image
123
-
124
  # Prompt classifier
125
- def response(instruction, input_image=None):
126
  if input_image is None:
127
  output="Image Generation"
128
- yield output
129
  else:
130
- client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
131
-
132
- generate_kwargs = dict(
133
- max_new_tokens=5,
134
- )
135
-
136
- system="[SYSTEM] You will be provided with text, and your task is to classify task is image generation or image editing answer with only task do not say anything else and stop as soon as possible. [TEXT]"
137
-
138
- formatted_prompt = system + instruction + "[TASK]"
139
- stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
140
- output = ""
141
- for response in stream:
142
- if not response.token.text == "</s>":
143
- output += response.token.text
144
- if "editing" in output:
145
  output = "Image Editing"
146
  else:
147
  output = "Image Generation"
148
- yield output
149
  return output
150
 
151
  css = '''
@@ -160,7 +124,7 @@ examples=[
160
  [
161
  "Image Generation",
162
  None,
163
- "A Super Car",
164
 
165
  ],
166
  [
@@ -178,7 +142,7 @@ examples=[
178
  [
179
  "Image Generation",
180
  None,
181
- "Kids going o school, Anime style",
182
 
183
  ],
184
  [
 
10
  from custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline
11
  from huggingface_hub import hf_hub_download
12
  from huggingface_hub import InferenceClient
13
+ from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler
14
 
15
+ device = "cuda" if torch.cuda.is_available() else "cpu"
16
+ dtype = torch.float16
17
+
18
+ repo = "stabilityai/stable-diffusion-3-medium-diffusers"
19
+ pipe = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.float16).to(device)
20
 
21
  help_text = """
22
  To optimize image results:
 
43
 
44
  # Image Editor
45
  edit_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors")
 
 
46
  EDMEulerScheduler.set_timesteps = set_timesteps_patched
 
47
  vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
 
48
  pipe_edit = StableDiffusionXLInstructPix2PixPipeline.from_single_file(
49
  edit_file, num_in_channels=8, is_cosxl_edit=True, vae=vae, torch_dtype=torch.float16,
50
  )
51
  pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
52
  pipe_edit.to("cuda")
53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
  # Generator
55
  @spaces.GPU(duration=30, queue=False)
56
+ def king(type ,
57
+ input_image ,
58
+ instruction: str ,
59
  steps: int = 8,
60
  randomize_seed: bool = False,
61
  seed: int = 25,
 
63
  image_cfg_scale: float = 1.7,
64
  width: int = 1024,
65
  height: int = 1024,
66
+ guidance_scale: float = 6,
67
  use_resolution_binning: bool = True,
68
  progress=gr.Progress(track_tqdm=True),
69
  ):
70
  if type=="Image Editing" :
71
+ if randomize_seed:
72
+ seed = random.randint(0, 99999)
73
  text_cfg_scale = text_cfg_scale
74
  image_cfg_scale = image_cfg_scale
75
  input_image = input_image
 
82
  num_inference_steps=steps, generator=generator).images[0]
83
  return seed, output_image
84
  else :
85
+ if randomize_seed:
86
+ seed = random.randint(0, 99999)
87
+ generator = torch.Generator().manual_seed(seed)
88
+ image = pipe(
89
+ prompt = instruction,
90
+ guidance_scale = 7,
91
+ num_inference_steps = steps,
92
+ width = width,
93
+ height = height,
94
+ generator = generator
95
+ ).images[0]
96
+ return seed, image
97
+
98
+ client = InferenceClient()
 
 
 
 
99
  # Prompt classifier
100
+ def response(instruction, input_image=None ):
101
  if input_image is None:
102
  output="Image Generation"
 
103
  else:
104
+ text = instruction
105
+ labels = ["Image Editing", "Image Generation"]
106
+ classification = client.zero_shot_classification(text, labels, multi_label=True)
107
+ output = classification[0]
108
+ output = str(output)
109
+ if "Editing" in output:
 
 
 
 
 
 
 
 
 
110
  output = "Image Editing"
111
  else:
112
  output = "Image Generation"
 
113
  return output
114
 
115
  css = '''
 
124
  [
125
  "Image Generation",
126
  None,
127
+ "A luxurious supercar with a unique design. The car should have a pearl white finish, and gold accents. 4k, realistic.",
128
 
129
  ],
130
  [
 
142
  [
143
  "Image Generation",
144
  None,
145
+ "Ironman fighting with hulk, wall painting",
146
 
147
  ],
148
  [
red_car.png CHANGED

Git LFS Details

  • SHA256: 59ec0043da025431c28850a1ecd85059af1e74c8e16b6570878d14b7f5eb9936
  • Pointer size: 131 Bytes
  • Size of remote file: 957 kB
requirements.txt CHANGED
@@ -5,6 +5,7 @@ numpy
5
  transformers
6
  accelerate
7
  safetensors
8
- diffusers
9
  spaces
10
- peft
 
 
5
  transformers
6
  accelerate
7
  safetensors
8
+ git+https://github.com/huggingface/diffusers.git
9
  spaces
10
+ peft
11
+ sentencepiece
supercar.png CHANGED

Git LFS Details

  • SHA256: 25b6b84c116af20d0a2bebee9ecd6c0addeff86b06b041cde7a4c27c9aadecac
  • Pointer size: 131 Bytes
  • Size of remote file: 928 kB