Spaces:
Running
Running
Update custom_pipeline.py
Browse files- custom_pipeline.py +9 -66
custom_pipeline.py
CHANGED
@@ -44,7 +44,6 @@ from diffusers.utils.torch_utils import randn_tensor
|
|
44 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
45 |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
46 |
|
47 |
-
|
48 |
if is_invisible_watermark_available():
|
49 |
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
|
50 |
|
@@ -88,7 +87,6 @@ EXAMPLE_DOC_STRING = """
|
|
88 |
```
|
89 |
"""
|
90 |
|
91 |
-
|
92 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
93 |
def retrieve_latents(
|
94 |
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
@@ -773,7 +771,7 @@ class CosStableDiffusionXLInstructPix2PixPipeline(
|
|
773 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
774 |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
775 |
# corresponds to doing no classifier free guidance.
|
776 |
-
do_classifier_free_guidance = guidance_scale >
|
777 |
|
778 |
# 3. Encode input prompt
|
779 |
text_encoder_lora_scale = (
|
@@ -815,9 +813,7 @@ class CosStableDiffusionXLInstructPix2PixPipeline(
|
|
815 |
device,
|
816 |
do_classifier_free_guidance,
|
817 |
)
|
818 |
-
|
819 |
-
image_latents = image_latents * self.vae.config.scaling_factor
|
820 |
-
|
821 |
# 7. Prepare latent variables
|
822 |
num_channels_latents = self.vae.config.latent_channels
|
823 |
latents = self.prepare_latents(
|
@@ -859,7 +855,8 @@ class CosStableDiffusionXLInstructPix2PixPipeline(
|
|
859 |
dtype=prompt_embeds.dtype,
|
860 |
text_encoder_projection_dim=text_encoder_projection_dim,
|
861 |
)
|
862 |
-
|
|
|
863 |
if do_classifier_free_guidance:
|
864 |
# The extra concat similar to how it's done in SD InstructPix2Pix.
|
865 |
prompt_embeds = torch.cat([prompt_embeds, negative_prompt_embeds, negative_prompt_embeds], dim=0)
|
@@ -870,35 +867,19 @@ class CosStableDiffusionXLInstructPix2PixPipeline(
|
|
870 |
|
871 |
prompt_embeds = prompt_embeds.to(device)
|
872 |
add_text_embeds = add_text_embeds.to(device)
|
873 |
-
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
874 |
|
875 |
# 11. Denoising loop
|
876 |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
877 |
-
if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
|
878 |
-
discrete_timestep_cutoff = int(
|
879 |
-
round(
|
880 |
-
self.scheduler.config.num_train_timesteps
|
881 |
-
- (denoising_end * self.scheduler.config.num_train_timesteps)
|
882 |
-
)
|
883 |
-
)
|
884 |
-
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
885 |
-
timesteps = timesteps[:num_inference_steps]
|
886 |
-
|
887 |
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
888 |
for i, t in enumerate(timesteps):
|
889 |
-
#
|
890 |
-
# The latents are expanded 3 times because for pix2pix the guidance
|
891 |
-
# is applied for both the text and the input image.
|
892 |
latent_model_input = torch.cat([latents] * 3) if do_classifier_free_guidance else latents
|
893 |
-
|
894 |
-
# concat latents, image_latents in the channel dimension
|
895 |
-
scaled_latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
896 |
-
scaled_latent_model_input = torch.cat([scaled_latent_model_input, image_latents], dim=1)
|
897 |
|
898 |
# predict the noise residual
|
899 |
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
900 |
noise_pred = self.unet(
|
901 |
-
|
902 |
t,
|
903 |
encoder_hidden_states=prompt_embeds,
|
904 |
cross_attention_kwargs=cross_attention_kwargs,
|
@@ -911,7 +892,7 @@ class CosStableDiffusionXLInstructPix2PixPipeline(
|
|
911 |
noise_pred_text, noise_pred_image, noise_pred_uncond = noise_pred.chunk(3)
|
912 |
noise_pred = (
|
913 |
noise_pred_uncond
|
914 |
-
+ guidance_scale * (noise_pred_text -
|
915 |
+ image_guidance_scale * (noise_pred_image - noise_pred_uncond)
|
916 |
)
|
917 |
|
@@ -920,12 +901,7 @@ class CosStableDiffusionXLInstructPix2PixPipeline(
|
|
920 |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
921 |
|
922 |
# compute the previous noisy sample x_t -> x_t-1
|
923 |
-
latents_dtype = latents.dtype
|
924 |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
925 |
-
if latents.dtype != latents_dtype:
|
926 |
-
if torch.backends.mps.is_available():
|
927 |
-
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
928 |
-
latents = latents.to(latents_dtype)
|
929 |
|
930 |
# call the callback, if provided
|
931 |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
@@ -934,41 +910,8 @@ class CosStableDiffusionXLInstructPix2PixPipeline(
|
|
934 |
step_idx = i // getattr(self.scheduler, "order", 1)
|
935 |
callback(step_idx, t, latents)
|
936 |
|
937 |
-
if XLA_AVAILABLE:
|
938 |
-
xm.mark_step()
|
939 |
-
|
940 |
if not output_type == "latent":
|
941 |
-
|
942 |
-
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
943 |
-
|
944 |
-
if needs_upcasting:
|
945 |
-
self.upcast_vae()
|
946 |
-
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
947 |
-
elif latents.dtype != self.vae.dtype:
|
948 |
-
if torch.backends.mps.is_available():
|
949 |
-
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
950 |
-
self.vae = self.vae.to(latents.dtype)
|
951 |
-
|
952 |
-
# unscale/denormalize the latents
|
953 |
-
# denormalize with the mean and std if available and not None
|
954 |
-
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
|
955 |
-
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
|
956 |
-
if has_latents_mean and has_latents_std:
|
957 |
-
latents_mean = (
|
958 |
-
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
959 |
-
)
|
960 |
-
latents_std = (
|
961 |
-
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
962 |
-
)
|
963 |
-
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
|
964 |
-
else:
|
965 |
-
latents = latents / self.vae.config.scaling_factor
|
966 |
-
|
967 |
-
image = self.vae.decode(latents, return_dict=False)[0]
|
968 |
-
|
969 |
-
# cast back to fp16 if needed
|
970 |
-
if needs_upcasting:
|
971 |
-
self.vae.to(dtype=torch.float16)
|
972 |
else:
|
973 |
return StableDiffusionXLPipelineOutput(images=latents)
|
974 |
|
|
|
44 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
45 |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
46 |
|
|
|
47 |
if is_invisible_watermark_available():
|
48 |
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
|
49 |
|
|
|
87 |
```
|
88 |
"""
|
89 |
|
|
|
90 |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
91 |
def retrieve_latents(
|
92 |
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
|
|
771 |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
772 |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
773 |
# corresponds to doing no classifier free guidance.
|
774 |
+
do_classifier_free_guidance = guidance_scale > 1.0 and image_guidance_scale >= 1.0
|
775 |
|
776 |
# 3. Encode input prompt
|
777 |
text_encoder_lora_scale = (
|
|
|
813 |
device,
|
814 |
do_classifier_free_guidance,
|
815 |
)
|
816 |
+
|
|
|
|
|
817 |
# 7. Prepare latent variables
|
818 |
num_channels_latents = self.vae.config.latent_channels
|
819 |
latents = self.prepare_latents(
|
|
|
855 |
dtype=prompt_embeds.dtype,
|
856 |
text_encoder_projection_dim=text_encoder_projection_dim,
|
857 |
)
|
858 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
859 |
+
|
860 |
if do_classifier_free_guidance:
|
861 |
# The extra concat similar to how it's done in SD InstructPix2Pix.
|
862 |
prompt_embeds = torch.cat([prompt_embeds, negative_prompt_embeds, negative_prompt_embeds], dim=0)
|
|
|
867 |
|
868 |
prompt_embeds = prompt_embeds.to(device)
|
869 |
add_text_embeds = add_text_embeds.to(device)
|
|
|
870 |
|
871 |
# 11. Denoising loop
|
872 |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
873 |
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
874 |
for i, t in enumerate(timesteps):
|
875 |
+
# expand the latents if we are doing classifier free guidance
|
|
|
|
|
876 |
latent_model_input = torch.cat([latents] * 3) if do_classifier_free_guidance else latents
|
877 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
|
|
|
878 |
|
879 |
# predict the noise residual
|
880 |
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
881 |
noise_pred = self.unet(
|
882 |
+
torch.cat([latent_model_input, image_latents], dim=1),
|
883 |
t,
|
884 |
encoder_hidden_states=prompt_embeds,
|
885 |
cross_attention_kwargs=cross_attention_kwargs,
|
|
|
892 |
noise_pred_text, noise_pred_image, noise_pred_uncond = noise_pred.chunk(3)
|
893 |
noise_pred = (
|
894 |
noise_pred_uncond
|
895 |
+
+ guidance_scale * (noise_pred_text - noise_pred_uncond)
|
896 |
+ image_guidance_scale * (noise_pred_image - noise_pred_uncond)
|
897 |
)
|
898 |
|
|
|
901 |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
902 |
|
903 |
# compute the previous noisy sample x_t -> x_t-1
|
|
|
904 |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
|
|
|
|
|
|
|
|
905 |
|
906 |
# call the callback, if provided
|
907 |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
|
910 |
step_idx = i // getattr(self.scheduler, "order", 1)
|
911 |
callback(step_idx, t, latents)
|
912 |
|
|
|
|
|
|
|
913 |
if not output_type == "latent":
|
914 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
915 |
else:
|
916 |
return StableDiffusionXLPipelineOutput(images=latents)
|
917 |
|