File size: 20,656 Bytes
ffc3034
50baff6
 
ffc3034
50baff6
 
 
 
ffc3034
 
dfd57a0
50baff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbc2ac1
 
50baff6
 
 
bbc2ac1
 
 
 
 
 
 
 
 
50baff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbc2ac1
 
50baff6
 
 
bbc2ac1
 
 
 
 
 
 
 
 
 
 
 
 
50baff6
 
 
 
 
 
 
 
 
 
 
 
 
bbc2ac1
 
50baff6
 
 
bbc2ac1
 
 
 
 
 
 
 
 
 
 
50baff6
 
 
 
bbc2ac1
50baff6
 
 
 
 
 
bbc2ac1
 
50baff6
 
 
bbc2ac1
 
 
 
 
 
 
 
50baff6
 
 
 
bbc2ac1
50baff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbc2ac1
50baff6
 
bbc2ac1
50baff6
 
 
 
 
 
bbc2ac1
50baff6
 
bbc2ac1
50baff6
 
 
 
 
 
 
 
bbc2ac1
 
50baff6
 
 
bbc2ac1
50baff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbc2ac1
ffc3034
bbc2ac1
ffc3034
 
bbc2ac1
ffc3034
 
 
 
 
 
 
 
 
 
50baff6
 
 
 
bbc2ac1
50baff6
 
 
bbc2ac1
ffc3034
50baff6
 
 
 
 
 
 
 
 
 
ffc3034
50baff6
bbc2ac1
 
50baff6
 
 
 
 
bbc2ac1
50baff6
 
 
 
ffc3034
bbc2ac1
ffc3034
 
50baff6
ffc3034
50baff6
 
 
 
 
dfd57a0
 
 
 
 
 
 
 
 
 
bbc2ac1
dfd57a0
bbc2ac1
dfd57a0
bbc2ac1
dfd57a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbc2ac1
 
dfd57a0
 
 
 
 
bbc2ac1
dfd57a0
 
 
 
 
 
 
 
 
bbc2ac1
dfd57a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50baff6
 
 
 
 
 
 
 
ffc3034
50baff6
bbc2ac1
 
50baff6
 
 
 
 
bbc2ac1
50baff6
 
 
 
 
 
ffc3034
50baff6
bbc2ac1
ffc3034
 
 
 
50baff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbc2ac1
50baff6
 
 
bbc2ac1
 
50baff6
 
 
 
 
 
bbc2ac1
50baff6
 
 
 
 
 
 
 
 
 
dfd57a0
50baff6
bbc2ac1
50baff6
 
 
 
 
bbc2ac1
 
50baff6
 
 
 
 
 
 
 
 
bbc2ac1
50baff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbc2ac1
 
50baff6
 
 
bbc2ac1
50baff6
 
 
 
 
 
 
 
 
bbc2ac1
 
50baff6
 
 
bbc2ac1
50baff6
 
 
 
 
bbc2ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50baff6
 
 
 
bbc2ac1
 
50baff6
 
 
 
bbc2ac1
50baff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
from fastapi import FastAPI, HTTPException, Query
from fastapi.responses import JSONResponse
from webscout import WEBS, transcriber, LLM
from typing import Optional, List, Dict, Union
from fastapi.encoders import jsonable_encoder
from bs4 import BeautifulSoup
import requests
import urllib.parse
import asyncio
import aiohttp
import threading

app = FastAPI()

@app.get("/")
async def root():
    return {"message": "API documentation can be found at /docs"}

@app.get("/health")
async def health_check():
    return {"status": "OK"}

@app.get("/api/search")
async def search(
    q: str,
    max_results: int = 10,
    timelimit: Optional[str] = None,
    safesearch: str = "moderate",
    region: str = "wt-wt",
    backend: str = "api",
    proxy: Optional[str] = None  # Add proxy parameter here
):
    """Perform a text search."""
    try:
        with WEBS(proxy=proxy) as webs:  # Pass proxy to WEBS instance
            results = webs.text(
                keywords=q,
                region=region,
                safesearch=safesearch,
                timelimit=timelimit,
                backend=backend,
                max_results=max_results,
            )
            return JSONResponse(content=jsonable_encoder(results))
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error during search: {e}")

@app.get("/api/images")
async def images(
    q: str,
    max_results: int = 10,
    safesearch: str = "moderate",
    region: str = "wt-wt",
    timelimit: Optional[str] = None,
    size: Optional[str] = None,
    color: Optional[str] = None,
    type_image: Optional[str] = None,
    layout: Optional[str] = None,
    license_image: Optional[str] = None,
    proxy: Optional[str] = None # Add proxy parameter here
):
    """Perform an image search."""
    try:
        with WEBS(proxy=proxy) as webs:  # Pass proxy to WEBS instance
            results = webs.images(
                keywords=q,
                region=region,
                safesearch=safesearch,
                timelimit=timelimit,
                size=size,
                color=color,
                type_image=type_image,
                layout=layout,
                license_image=license_image,
                max_results=max_results,
            )
            return JSONResponse(content=jsonable_encoder(results))
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error during image search: {e}")

@app.get("/api/videos")
async def videos(
    q: str,
    max_results: int = 10,
    safesearch: str = "moderate",
    region: str = "wt-wt",
    timelimit: Optional[str] = None,
    resolution: Optional[str] = None,
    duration: Optional[str] = None,
    license_videos: Optional[str] = None,
    proxy: Optional[str] = None # Add proxy parameter here
):
    """Perform a video search."""
    try:
        with WEBS(proxy=proxy) as webs:  # Pass proxy to WEBS instance
            results = webs.videos(
                keywords=q,
                region=region,
                safesearch=safesearch,
                timelimit=timelimit,
                resolution=resolution,
                duration=duration,
                license_videos=license_videos,
                max_results=max_results,
            )
            return JSONResponse(content=jsonable_encoder(results))
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error during video search: {e}")


@app.get("/api/news")
async def news(
    q: str,
    max_results: int = 10,
    safesearch: str = "moderate",
    region: str = "wt-wt",
    timelimit: Optional[str] = None,
    proxy: Optional[str] = None  # Add proxy parameter here
):
    """Perform a news search."""
    try:
        with WEBS(proxy=proxy) as webs:  # Pass proxy to WEBS instance
            results = webs.news(
                keywords=q,
                region=region,
                safesearch=safesearch,
                timelimit=timelimit,
                max_results=max_results
            )
            return JSONResponse(content=jsonable_encoder(results))
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error during news search: {e}")


@app.get("/api/llm")
async def llm_chat(
    model: str,
    message: str,
    system_prompt: str = Query(None, description="Optional custom system prompt")
):
    """Interact with a specified large language model with an optional system prompt."""
    try:
        messages = [{"role": "user", "content": message}]
        if system_prompt:
            messages.insert(0, {"role": "system", "content": system_prompt})  # Add system message at the beginning

        llm = LLM(model=model) 
        response = llm.chat(messages=messages)
        return JSONResponse(content={"response": response})
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error during LLM chat: {e}")


@app.get("/api/answers")
async def answers(q: str, proxy: Optional[str] = None):
    """Get instant answers for a query."""
    try:
        with WEBS(proxy=proxy) as webs:
            results = webs.answers(keywords=q)
            return JSONResponse(content=jsonable_encoder(results))
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error getting instant answers: {e}")

@app.get("/api/suggestions")
async def suggestions(q: str, region: str = "wt-wt", proxy: Optional[str] = None):
    """Get search suggestions for a query."""
    try:
        with WEBS(proxy=proxy) as webs:
            results = webs.suggestions(keywords=q, region=region)
            return JSONResponse(content=jsonable_encoder(results))
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error getting search suggestions: {e}")

@app.get("/api/chat")
async def chat(
    q: str,
    model: str = "gpt-3.5",
    proxy: Optional[str] = None
):
    """Perform a text search."""
    try:
        with WEBS(proxy=proxy) as webs:
            results = webs.chat(keywords=q, model=model)
            return JSONResponse(content=jsonable_encoder(results))
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error getting chat results: {e}")

def extract_text_from_webpage(html_content):
    """Extracts visible text from HTML content using BeautifulSoup."""
    soup = BeautifulSoup(html_content, "html.parser")
    # Remove unwanted tags
    for tag in soup(["script", "style", "header", "footer", "nav"]):
        tag.extract()
    # Get the remaining visible text
    visible_text = soup.get_text(strip=True)
    return visible_text

async def fetch_and_extract(url, max_chars, proxy: Optional[str] = None):
    """Fetches a URL and extracts text asynchronously."""
    
    async with aiohttp.ClientSession() as session:
        try:
            async with session.get(url, headers={"User-Agent": "Mozilla/5.0"}, proxy=proxy) as response:
                response.raise_for_status()
                html_content = await response.text()
                visible_text = extract_text_from_webpage(html_content)
                if len(visible_text) > max_chars:
                    visible_text = visible_text[:max_chars] + "..."
                return {"link": url, "text": visible_text}
        except (aiohttp.ClientError, requests.exceptions.RequestException) as e:
            print(f"Error fetching or processing {url}: {e}")
            return {"link": url, "text": None}

@app.get("/api/web_extract")
async def web_extract(
    url: str,
    max_chars: int = 12000,  # Adjust based on token limit
    proxy: Optional[str] = None
):
    """Extracts text from a given URL."""
    try:
        result = await fetch_and_extract(url, max_chars, proxy)
        return {"url": url, "text": result["text"]}
    except requests.exceptions.RequestException as e:
        raise HTTPException(status_code=500, detail=f"Error fetching or processing URL: {e}")

@app.get("/api/search-and-extract")
async def web_search_and_extract(
    q: str,
    max_results: int = 3,
    timelimit: Optional[str] = None,
    safesearch: str = "moderate",
    region: str = "wt-wt",
    backend: str = "html",
    max_chars: int = 6000,
    extract_only: bool = True,
    proxy: Optional[str] = None
):
    """
    Searches using WEBS, extracts text from the top results, and returns both.
    """
    try:
        with WEBS(proxy=proxy) as webs:
            # Perform WEBS search
            search_results = webs.text(keywords=q, region=region, safesearch=safesearch,
                                     timelimit=timelimit, backend=backend, max_results=max_results)

            # Extract text from each result's link asynchronously
            tasks = [fetch_and_extract(result['href'], max_chars, proxy) for result in search_results if 'href' in result]
            extracted_results = await asyncio.gather(*tasks)

            if extract_only:
                return JSONResponse(content=jsonable_encoder(extracted_results))
            else:
                return JSONResponse(content=jsonable_encoder({"search_results": search_results, "extracted_results": extracted_results}))
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error during search and extraction: {e}")

def extract_text_from_webpage2(html_content):
    """Extracts visible text from HTML content using BeautifulSoup."""
    soup = BeautifulSoup(html_content, "html.parser")
    # Remove unwanted tags
    for tag in soup(["script", "style", "header", "footer", "nav"]):
        tag.extract()
    # Get the remaining visible text
    visible_text = soup.get_text(strip=True)
    return visible_text

def fetch_and_extract2(url, max_chars, proxy: Optional[str] = None):
    """Fetches a URL and extracts text using threading."""
    proxies = {'http': proxy, 'https': proxy} if proxy else None
    try:
        response = requests.get(url, headers={"User-Agent": "Mozilla/5.0"}, proxies=proxies)
        response.raise_for_status()
        html_content = response.text
        visible_text = extract_text_from_webpage2(html_content)
        if len(visible_text) > max_chars:
            visible_text = visible_text[:max_chars] + "..."
        return {"link": url, "text": visible_text}
    except (requests.exceptions.RequestException) as e:
        print(f"Error fetching or processing {url}: {e}")
        return {"link": url, "text": None}

@app.get("/api/websearch-and-extract-threading")
def web_search_and_extract_threading(
    q: str,
    max_results: int = 3,
    timelimit: Optional[str] = None,
    safesearch: str = "moderate",
    region: str = "wt-wt",
    backend: str = "html",
    max_chars: int = 6000,
    extract_only: bool = True,
    proxy: Optional[str] = None
):
    """
    Searches using WEBS, extracts text from the top results using threading, and returns both.
    """
    try:
        with WEBS(proxy=proxy) as webs:
            # Perform WEBS search
            search_results = webs.text(keywords=q, region=region, safesearch=safesearch,
                                     timelimit=timelimit, backend=backend, max_results=max_results)

            # Extract text from each result's link using threading
            extracted_results = []
            threads = []
            for result in search_results:
                if 'href' in result:
                    thread = threading.Thread(target=lambda: extracted_results.append(fetch_and_extract2(result['href'], max_chars, proxy)))
                    threads.append(thread)
                    thread.start()

            # Wait for all threads to finish
            for thread in threads:
                thread.join()

            if extract_only:
                return JSONResponse(content=jsonable_encoder(extracted_results))
            else:
                return JSONResponse(content=jsonable_encoder({"search_results": search_results, "extracted_results": extracted_results}))
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error during search and extraction: {e}")


@app.get("/api/adv_web_search")
async def adv_web_search(
    q: str,
    model: str = "gpt-3.5",
    max_results: int = 3,  
    timelimit: Optional[str] = None,
    safesearch: str = "moderate",
    region: str = "wt-wt",
    backend: str = "html",
    max_chars: int = 6000,  
    system_prompt: str = "You are Most Advanced and Powerful Ai chatbot, User ask you questions and you have to answer that, You are also provided with Google Search Results, To increase your accuracy and providing real time data. Your task is to answer in best way to user.",
    proxy: Optional[str] = None
):
    """
    Combines web search, web extraction, and LLM chat for advanced search.
    """
    try:
        with WEBS(proxy=proxy) as webs:
            # 1. Perform the web search
            search_results = webs.text(keywords=q, region=region, 
                                     safesearch=safesearch,
                                     timelimit=timelimit, backend=backend, 
                                     max_results=max_results)

            # 2. Extract text from top search result URLs asynchronously 
            extracted_text = ""
            tasks = [fetch_and_extract(result['href'], max_chars, proxy) for result in search_results if 'href' in result]
            extracted_results = await asyncio.gather(*tasks)
            for result in extracted_results:
                if result['text']:
                    extracted_text += f"## Content from: {result['link']}\n\n{result['text']}\n\n"

        # 3. Construct the prompt for the LLM
        llm_prompt = f"Query by user: {q} , Answer the query asked by user in detail. Now, You are provided with Google Search Results, To increase your accuracy and providing real time data. SEarch Result: {extracted_text}"

        # 4. Get the LLM's response using LLM class (similar to /api/llm)
        messages = [{"role": "user", "content": llm_prompt}]
        if system_prompt:
            messages.insert(0, {"role": "system", "content": system_prompt})

        llm = LLM(model=model)
        llm_response = llm.chat(messages=messages)

        # 5. Return the results
        return JSONResponse(content=jsonable_encoder({ "llm_response": llm_response }))

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error during advanced search: {e}")

        
@app.get("/api/website_summarizer")
async def website_summarizer(url: str, proxy: Optional[str] = None):
    """Summarizes the content of a given URL using a chat model."""
    try:
        # Extract text from the given URL
        proxies = {'http': proxy, 'https': proxy} if proxy else None
        response = requests.get(url, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"}, proxies=proxies)
        response.raise_for_status()
        visible_text = extract_text_from_webpage(response.text)
        if len(visible_text) > 7500:  # Adjust max_chars based on your needs
            visible_text = visible_text[:7500] + "..."

        # Use chat model to summarize the extracted text
        with WEBS(proxy=proxy) as webs:
            summary_prompt = f"Summarize this in detail in Paragraph: {visible_text}"
            summary_result = webs.chat(keywords=summary_prompt, model="gpt-3.5")

        # Return the summary result
        return JSONResponse(content=jsonable_encoder({summary_result}))

    except requests.exceptions.RequestException as e:
        raise HTTPException(status_code=500, detail=f"Error fetching or processing URL: {e}")
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error during summarization: {e}")
        
@app.get("/api/ask_website")
async def ask_website(url: str, question: str, model: str = "llama-3-70b", proxy: Optional[str] = None):
    """
    Asks a question about the content of a given website.
    """
    try:
        # Extract text from the given URL
        proxies = {'http': proxy, 'https': proxy} if proxy else None
        response = requests.get(url, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"}, proxies=proxies)
        response.raise_for_status()
        visible_text = extract_text_from_webpage(response.text)
        if len(visible_text) > 7500:  # Adjust max_chars based on your needs
            visible_text = visible_text[:7500] + "..."

        # Construct a prompt for the chat model
        prompt = f"Based on the following text, answer this question in Paragraph: [QUESTION] {question} [TEXT] {visible_text}"

        # Use chat model to get the answer
        with WEBS(proxy=proxy) as webs:
            answer_result = webs.chat(keywords=prompt, model=model)

        # Return the answer result
        return JSONResponse(content=jsonable_encoder({answer_result}))

    except requests.exceptions.RequestException as e:
        raise HTTPException(status_code=500, detail=f"Error fetching or processing URL: {e}")
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error during question answering: {e}")
        
@app.get("/api/maps")
async def maps(
    q: str,
    place: Optional[str] = None,
    street: Optional[str] = None,
    city: Optional[str] = None,
    county: Optional[str] = None,
    state: Optional[str] = None,
    country: Optional[str] = None,
    postalcode: Optional[str] = None,
    latitude: Optional[str] = None,
    longitude: Optional[str] = None,
    radius: int = 0,
    max_results: int = 10,
    proxy: Optional[str] = None
):
    """Perform a maps search."""
    try:
        with WEBS(proxy=proxy) as webs:
            results = webs.maps(keywords=q, place=place, street=street, city=city, county=county, state=state, country=country, postalcode=postalcode, latitude=latitude, longitude=longitude, radius=radius, max_results=max_results)
            return JSONResponse(content=jsonable_encoder(results))
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error during maps search: {e}")

@app.get("/api/translate")
async def translate(
    q: str,
    from_: Optional[str] = None,
    to: str = "en",
    proxy: Optional[str] = None
):
    """Translate text."""
    try:
        with WEBS(proxy=proxy) as webs:
            results = webs.translate(keywords=q, from_=from_, to=to)
            return JSONResponse(content=jsonable_encoder(results))
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error during translation: {e}")

from easygoogletranslate import EasyGoogleTranslate

@app.get("/api/google_translate")
def google_translate(q: str, from_: Optional[str] = 'auto', to: str = "en"):
    try:
        translator = EasyGoogleTranslate(
    source_language=from_,
    target_language=to,
    timeout=10
)
        result = translator.translate(q)
        return JSONResponse(content=jsonable_encoder({"detected_language": from_ , "original": q , "translated": result}))
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error during translation: {e}")
    

@app.get("/api/youtube/transcript")
async def youtube_transcript(
    video_id: str,
    languages: str = "en",
    preserve_formatting: bool = False,
    proxy: Optional[str] = None  # Add proxy parameter
):
    """Get the transcript of a YouTube video."""
    try:
        languages_list = languages.split(",")
        transcript = transcriber.get_transcript(video_id, languages=languages_list, preserve_formatting=preserve_formatting, proxies=proxy)
        return JSONResponse(content=jsonable_encoder(transcript))
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error getting YouTube transcript: {e}")
        
import requests
@app.get("/weather/json/{location}")
def get_weather_json(location: str):
    url = f"https://wttr.in/{location}?format=j1"
    response = requests.get(url)
    if response.status_code == 200:
        return response.json()
    else:
        return {"error": f"Unable to fetch weather data. Status code: {response.status_code}"}

@app.get("/weather/ascii/{location}")
def get_ascii_weather(location: str):
    url = f"https://wttr.in/{location}"
    response = requests.get(url, headers={'User-Agent': 'curl'})
    if response.status_code == 200:
        return response.text
    else:
        return {"error": f"Unable to fetch weather data. Status code: {response.status_code}"}

# Run the API server if this script is executed
if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8083)