Spaces:
Runtime error
Runtime error
File size: 25,101 Bytes
519be3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 |
import os
from share import *
import config
import cv2
import einops
import gradio as gr
import numpy as np
import torch
import random
from pytorch_lightning import seed_everything
from annotator.util import resize_image
from cldm.model import create_model, load_state_dict
from cldm.ddim_haced_sag_step import DDIMSampler
from lavis.models import load_model_and_preprocess
from PIL import Image
import tqdm
from ldm.models.autoencoder_train import AutoencoderKL
ckpt_path="./pretrained_models/main_model.ckpt"
model = create_model('./models/cldm_v15_inpainting_infer1.yaml').cpu()
model.load_state_dict(load_state_dict(ckpt_path, location='cuda'),strict=False)
model = model.cuda()
ddim_sampler = DDIMSampler(model)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
BLIP_model, vis_processors, _ = load_model_and_preprocess(name="blip_caption", model_type="base_coco", is_eval=True, device=device)
vae_model_ckpt_path="./pretrained_models/content-guided_deformable_vae.ckpt"
def load_vae():
init_config = {
"embed_dim": 4,
"monitor": "val/rec_loss",
"ddconfig":{
"double_z": True,
"z_channels": 4,
"resolution": 256,
"in_channels": 3,
"out_ch": 3,
"ch": 128,
"ch_mult":[1,2,4,4],
"num_res_blocks": 2,
"attn_resolutions": [],
"dropout": 0.0,
},
"lossconfig":{
"target": "ldm.modules.losses.LPIPSWithDiscriminator",
"params":{
"disc_start": 501,
"kl_weight": 0,
"disc_weight": 0.025,
"disc_factor": 1.0
}
}
}
vae = AutoencoderKL(**init_config)
vae.load_state_dict(load_state_dict(vae_model_ckpt_path, location='cuda'))
vae = vae.cuda()
return vae
vae_model=load_vae()
def encode_mask(mask,masked_image):
mask = torch.nn.functional.interpolate(mask, size=(mask.shape[2] // 8, mask.shape[3] // 8))
# mask=torch.cat([mask] * 2) #if do_classifier_free_guidance else mask
mask = mask.to(device="cuda")
# do_classifier_free_guidance=False
masked_image_latents = model.get_first_stage_encoding(model.encode_first_stage(masked_image.cuda())).detach()
return mask,masked_image_latents
def get_mask(input_image,hint_image):
mask=input_image.copy()
H,W,C=input_image.shape
for i in range(H):
for j in range(W):
if input_image[i,j,0]==hint_image[i,j,0]:
# print(input_image[i,j,0])
mask[i,j,:]=255.
else:
mask[i,j,:]=0. #input_image[i,j,:]
kernel=cv2.getStructuringElement(cv2.MORPH_RECT,(3,3))
mask=cv2.morphologyEx(np.array(mask),cv2.MORPH_OPEN,kernel,iterations=1)
return mask
def prepare_mask_and_masked_image(image, mask):
"""
Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
``image`` and ``1`` for the ``mask``.
The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
Args:
image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.
Raises:
ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
(ot the other way around).
Returns:
tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
dimensions: ``batch x channels x height x width``.
"""
if isinstance(image, torch.Tensor):
if not isinstance(mask, torch.Tensor):
raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not")
# Batch single image
if image.ndim == 3:
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
image = image.unsqueeze(0)
# Batch and add channel dim for single mask
if mask.ndim == 2:
mask = mask.unsqueeze(0).unsqueeze(0)
# Batch single mask or add channel dim
if mask.ndim == 3:
# Single batched mask, no channel dim or single mask not batched but channel dim
if mask.shape[0] == 1:
mask = mask.unsqueeze(0)
# Batched masks no channel dim
else:
mask = mask.unsqueeze(1)
assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"
# Check image is in [-1, 1]
if image.min() < -1 or image.max() > 1:
raise ValueError("Image should be in [-1, 1] range")
# Check mask is in [0, 1]
if mask.min() < 0 or mask.max() > 1:
raise ValueError("Mask should be in [0, 1] range")
# Binarize mask
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
# Image as float32
image = image.to(dtype=torch.float32)
elif isinstance(mask, torch.Tensor):
raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
else:
# preprocess image
if isinstance(image, (Image.Image, np.ndarray)):
image = [image]
if isinstance(image, list) and isinstance(image[0], Image.Image):
image = [np.array(i.convert("RGB"))[None, :] for i in image]
image = np.concatenate(image, axis=0)
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
image = np.concatenate([i[None, :] for i in image], axis=0)
image = image.transpose(0, 3, 1, 2)
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
# preprocess mask
if isinstance(mask, (Image.Image, np.ndarray)):
mask = [mask]
if isinstance(mask, list) and isinstance(mask[0], Image.Image):
mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
mask = mask.astype(np.float32) / 255.0
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask)
masked_image = image * (mask < 0.5)
return mask, masked_image
# generate image
generator = torch.manual_seed(859311133)#0
def path2L(img_path):
raw_image = cv2.imread(img_path)
raw_image = cv2.cvtColor(raw_image,cv2.COLOR_BGR2LAB)
raw_image_input = cv2.merge([raw_image[:,:,0],raw_image[:,:,0],raw_image[:,:,0]])
return raw_image_input
def is_gray_scale(img, threshold=10):
img = Image.fromarray(img)
if len(img.getbands()) == 1:
return True
img1 = np.asarray(img.getchannel(channel=0), dtype=np.int16)
img2 = np.asarray(img.getchannel(channel=1), dtype=np.int16)
img3 = np.asarray(img.getchannel(channel=2), dtype=np.int16)
diff1 = (img1 - img2).var()
diff2 = (img2 - img3).var()
diff3 = (img3 - img1).var()
diff_sum = (diff1 + diff2 + diff3) / 3.0
if diff_sum <= threshold:
return True
else:
return False
def randn_tensor(
shape,
generator= None,
device= None,
dtype=None,
layout= None,
):
"""A helper function to create random tensors on the desired `device` with the desired `dtype`. When
passing a list of generators, you can seed each batch size individually. If CPU generators are passed, the tensor
is always created on the CPU.
"""
# device on which tensor is created defaults to device
rand_device = device
batch_size = shape[0]
layout = layout or torch.strided
device = device or torch.device("cpu")
if generator is not None:
gen_device_type = generator.device.type if not isinstance(generator, list) else generator[0].device.type
if gen_device_type != device.type and gen_device_type == "cpu":
rand_device = "cpu"
if device != "mps":
print("The passed generator was created on 'cpu' even though a tensor on {device} was expected.")
# logger.info(
# f"The passed generator was created on 'cpu' even though a tensor on {device} was expected."
# f" Tensors will be created on 'cpu' and then moved to {device}. Note that one can probably"
# f" slighly speed up this function by passing a generator that was created on the {device} device."
# )
elif gen_device_type != device.type and gen_device_type == "cuda":
raise ValueError(f"Cannot generate a {device} tensor from a generator of type {gen_device_type}.")
# make sure generator list of length 1 is treated like a non-list
if isinstance(generator, list) and len(generator) == 1:
generator = generator[0]
if isinstance(generator, list):
shape = (1,) + shape[1:]
latents = [
torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype, layout=layout)
for i in range(batch_size)
]
latents = torch.cat(latents, dim=0).to(device)
else:
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype, layout=layout).to(device)
return latents
def add_noise(
original_samples: torch.FloatTensor,
noise: torch.FloatTensor,
timesteps: torch.IntTensor,
) -> torch.FloatTensor:
betas = torch.linspace(0.00085, 0.0120, 1000, dtype=torch.float32)
alphas = 1.0 - betas
alphas_cumprod = torch.cumprod(alphas, dim=0)
alphas_cumprod = alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
timesteps = timesteps.to(original_samples.device)
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
def set_timesteps(num_inference_steps: int, timestep_spacing="leading",device=None):
"""
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
Args:
num_inference_steps (`int`):
the number of diffusion steps used when generating samples with a pre-trained model.
"""
num_train_timesteps=1000
if num_inference_steps > num_train_timesteps:
raise ValueError(
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
f" {num_train_timesteps} as the unet model trained with this scheduler can only handle"
f" maximal {num_train_timesteps} timesteps."
)
num_inference_steps = num_inference_steps
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if timestep_spacing == "linspace":
timesteps = (
np.linspace(0, num_train_timesteps - 1, num_inference_steps)
.round()[::-1]
.copy()
.astype(np.int64)
)
elif timestep_spacing == "leading":
step_ratio = num_train_timesteps // num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
# timesteps += steps_offset
elif timestep_spacing == "trailing":
step_ratio = num_train_timesteps / num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = np.round(np.arange(num_train_timesteps, 0, -step_ratio)).astype(np.int64)
timesteps -= 1
else:
raise ValueError(
f"{timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'."
)
timesteps = torch.from_numpy(timesteps).to(device)
return timesteps
def get_timesteps(num_inference_steps, timesteps_set, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = timesteps_set[t_start * 1 :]
return timesteps, num_inference_steps - t_start
def get_noised_image_latents(img,W,H,ddim_steps,strength,seed,device):
img1 = [cv2.resize(img,(W,H))]
img1 = np.concatenate([i[None, :] for i in img1], axis=0)
img1 = img1.transpose(0, 3, 1, 2)
img1 = torch.from_numpy(img1).to(dtype=torch.float32) /127.5 - 1.0
image_latents=model.get_first_stage_encoding(model.encode_first_stage(img1.cuda())).detach()
shape=image_latents.shape
generator = torch.manual_seed(seed)
noise = randn_tensor(shape, generator=generator, device=device, dtype=torch.float32)
timesteps_set=set_timesteps(ddim_steps,timestep_spacing="linspace", device=device)
timesteps, num_inference_steps = get_timesteps(ddim_steps, timesteps_set, strength, device)
latent_timestep = timesteps[1].repeat(1 * 1)
init_latents = add_noise(image_latents, noise, torch.tensor(latent_timestep))
for j in range(0, 1000, 100):
x_samples=model.decode_first_stage(add_noise(image_latents, noise, torch.tensor(j)))
init_image=(einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
cv2.imwrite("./initlatents1/"+str(j)+"init_image.png",cv2.cvtColor(init_image[0],cv2.COLOR_RGB2BGR))
return init_latents
def process(using_deformable_vae,change_according_to_strokes,iterative_editing,input_image,hint_image,prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale, sag_scale,SAG_influence_step, seed, eta):
torch.cuda.empty_cache()
with torch.no_grad():
ref_flag=True
input_image_ori=input_image
if is_gray_scale(input_image):
print("It is a greyscale image.")
# mask=get_mask(input_image,hint_image)
else:
print("It is a color image.")
input_image_ori=input_image
input_image=cv2.cvtColor(input_image,cv2.COLOR_RGB2LAB)[:,:,0]
input_image=cv2.merge([input_image,input_image,input_image])
mask=get_mask(input_image_ori,hint_image)
cv2.imwrite("gradio_mask1.png",mask)
if iterative_editing:
mask=255-mask
if change_according_to_strokes:
hint_image=mask/255.*hint_image+(1-mask/255.)*input_image_ori
else:
hint_image=mask/255.*input_image+(1-mask/255.)*input_image_ori
else:
hint_image=mask/255.*input_image+(1-mask/255.)*hint_image
hint_image=hint_image.astype(np.uint8)
if len(prompt)==0:
image = Image.fromarray(input_image)
image = vis_processors["eval"](image).unsqueeze(0).to(device)
prompt = BLIP_model.generate({"image": image})[0]
if "a black and white photo of" in prompt or "black and white photograph of" in prompt:
prompt=prompt.replace(prompt[:prompt.find("of")+3],"")
print(prompt)
H_ori,W_ori,C_ori=input_image.shape
img = resize_image(input_image, image_resolution)
mask = resize_image(mask, image_resolution)
hint_image =resize_image(hint_image,image_resolution)
mask,masked_image=prepare_mask_and_masked_image(Image.fromarray(hint_image),Image.fromarray(mask))
mask,masked_image_latents=encode_mask(mask,masked_image)
H, W, C = img.shape
# if ref_image is None:
ref_image=np.array([[[0]*C]*W]*H).astype(np.float32)
# print(ref_image.shape)
# ref_flag=False
ref_image=resize_image(ref_image,image_resolution)
# cv2.imwrite("exemplar_image.png",cv2.cvtColor(ref_image,cv2.COLOR_RGB2BGR))
# ddim_steps=1
control = torch.from_numpy(img.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
ref_image=cv2.resize(ref_image,(W,H))
ref_image=torch.from_numpy(ref_image).cuda().unsqueeze(0)
init_latents=None
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
print("no reference images, using Frozen encoder")
cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
shape = (4, H // 8, W // 8)
if config.save_memory:
model.low_vram_shift(is_diffusing=True)
noise = randn_tensor(shape, generator=generator, device=device, dtype=torch.float32)
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
samples, intermediates = ddim_sampler.sample(model,ddim_steps, num_samples,
shape, cond, mask=mask, masked_image_latents=masked_image_latents,verbose=False, eta=eta,
# x_T=image_latents,
x_T=init_latents,
unconditional_guidance_scale=scale,
sag_scale = sag_scale,
SAG_influence_step=SAG_influence_step,
noise = noise,
unconditional_conditioning=un_cond)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
if not using_deformable_vae:
x_samples = model.decode_first_stage(samples)
else:
samples = model.decode_first_stage_before_vae(samples)
gray_content_z=vae_model.get_gray_content_z(torch.from_numpy(img.copy()).float().cuda() / 255.0)
# print(gray_content_z.shape)
x_samples = vae_model.decode(samples,gray_content_z)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
#single image replace L channel
results_ori = [x_samples[i] for i in range(num_samples)]
results_ori=[cv2.resize(i,(W_ori,H_ori),interpolation=cv2.INTER_LANCZOS4) for i in results_ori]
cv2.imwrite("result_ori.png",cv2.cvtColor(results_ori[0],cv2.COLOR_RGB2BGR))
results_tmp=[cv2.cvtColor(np.array(i),cv2.COLOR_RGB2LAB) for i in results_ori]
results=[cv2.merge([input_image[:,:,0],tmp[:,:,1],tmp[:,:,2]]) for tmp in results_tmp]
results_mergeL=[cv2.cvtColor(np.asarray(i),cv2.COLOR_LAB2RGB) for i in results]#cv2.COLOR_LAB2BGR)
cv2.imwrite("output.png",cv2.cvtColor(results_mergeL[0],cv2.COLOR_RGB2BGR))
return results_mergeL
def get_grayscale_img(img, progress=gr.Progress(track_tqdm=True)):
torch.cuda.empty_cache()
for j in tqdm.tqdm(range(1),desc="Uploading input..."):
return img,"Uploading input image done."
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.Markdown("## Control-Color")#("## Color-Anything")#Control Stable Diffusion with L channel
with gr.Row():
with gr.Column():
# input_image = gr.Image(source='upload', type="numpy")
grayscale_img = gr.Image(visible=False, type="numpy")
input_image = gr.Image(source='upload',tool='color-sketch',interactive=True)
Grayscale_button = gr.Button(value="Upload input image")
text_out = gr.Textbox(value="Please upload input image first, then draw the strokes or input text prompts or give reference images as you wish.")
prompt = gr.Textbox(label="Prompt")
change_according_to_strokes = gr.Checkbox(label='Change according to strokes\' color', value=True)
iterative_editing = gr.Checkbox(label='Only change the strokes\' area', value=False)
using_deformable_vae = gr.Checkbox(label='Using deformable vae. (Less color overflow)', value=False)
# with gr.Accordion("Input Reference", open=False):
# ref_image = gr.Image(source='upload', type="numpy")
run_button = gr.Button(label="Upload prompts/strokes (optional) and Run",value="Upload prompts/strokes (optional) and Run")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
#detect_resolution = gr.Slider(label="Depth Resolution", minimum=128, maximum=1024, value=384, step=1)
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=7.0, step=0.1)#value=9.0
sag_scale = gr.Slider(label="SAG Scale", minimum=0.0, maximum=1.0, value=0.05, step=0.01)#0.08
SAG_influence_step = gr.Slider(label="1000-SAG influence step", minimum=0, maximum=900, value=600, step=50)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)#94433242802
eta = gr.Number(label="eta (DDIM)", value=0.0)
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, detailed, real')#extremely detailed
n_prompt = gr.Textbox(label="Negative Prompt",
value='a black and white photo, longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
with gr.Column():
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
# grayscale_img = gr.Image(interactive=False,visible=False)
Grayscale_button.click(fn=get_grayscale_img,inputs=input_image,outputs=[grayscale_img,text_out])
ips = [using_deformable_vae,change_according_to_strokes,iterative_editing,grayscale_img,input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale,sag_scale,SAG_influence_step, seed, eta]
run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
block.launch(server_name='0.0.0.0',share=True)
|