File size: 25,101 Bytes
519be3e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
import os
from share import *
import config

import cv2
import einops
import gradio as gr
import numpy as np
import torch
import random

from pytorch_lightning import seed_everything
from annotator.util import resize_image
from cldm.model import create_model, load_state_dict
from cldm.ddim_haced_sag_step import DDIMSampler
from lavis.models import load_model_and_preprocess
from PIL import Image
import tqdm

from ldm.models.autoencoder_train import AutoencoderKL

ckpt_path="./pretrained_models/main_model.ckpt"

model = create_model('./models/cldm_v15_inpainting_infer1.yaml').cpu()
model.load_state_dict(load_state_dict(ckpt_path, location='cuda'),strict=False)
model = model.cuda()

ddim_sampler = DDIMSampler(model)


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
BLIP_model, vis_processors, _ = load_model_and_preprocess(name="blip_caption", model_type="base_coco", is_eval=True, device=device)

vae_model_ckpt_path="./pretrained_models/content-guided_deformable_vae.ckpt"

def load_vae():
    init_config = {
        "embed_dim": 4,
        "monitor": "val/rec_loss",
        "ddconfig":{
          "double_z": True,
          "z_channels": 4,
          "resolution": 256,
          "in_channels": 3,
          "out_ch": 3,
          "ch": 128,
          "ch_mult":[1,2,4,4],
          "num_res_blocks": 2,
          "attn_resolutions": [],
          "dropout": 0.0,
        },
        "lossconfig":{
          "target": "ldm.modules.losses.LPIPSWithDiscriminator",
          "params":{
            "disc_start": 501,
            "kl_weight": 0,
            "disc_weight": 0.025,
            "disc_factor": 1.0
        }
        }
    }
    vae = AutoencoderKL(**init_config)
    vae.load_state_dict(load_state_dict(vae_model_ckpt_path, location='cuda'))
    vae = vae.cuda()
    return vae

vae_model=load_vae()

def encode_mask(mask,masked_image):
    mask = torch.nn.functional.interpolate(mask, size=(mask.shape[2] // 8, mask.shape[3] // 8))
    # mask=torch.cat([mask] * 2) #if do_classifier_free_guidance else mask
    mask = mask.to(device="cuda")
    # do_classifier_free_guidance=False
    masked_image_latents = model.get_first_stage_encoding(model.encode_first_stage(masked_image.cuda())).detach()
    return mask,masked_image_latents

def get_mask(input_image,hint_image):
    mask=input_image.copy()
    H,W,C=input_image.shape
    for i in range(H):
        for j in range(W):
            if input_image[i,j,0]==hint_image[i,j,0]:
                # print(input_image[i,j,0])
                mask[i,j,:]=255.
            else:
                mask[i,j,:]=0. #input_image[i,j,:]
    kernel=cv2.getStructuringElement(cv2.MORPH_RECT,(3,3))
    mask=cv2.morphologyEx(np.array(mask),cv2.MORPH_OPEN,kernel,iterations=1)
    return mask

def prepare_mask_and_masked_image(image, mask):
    """
    Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
    converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
    ``image`` and ``1`` for the ``mask``.
    The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
    binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
    Args:
        image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
            It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
            ``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
        mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
            It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
            ``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.
    Raises:
        ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
        should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
        TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
            (ot the other way around).
    Returns:
        tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
            dimensions: ``batch x channels x height x width``.
    """
    if isinstance(image, torch.Tensor):
        if not isinstance(mask, torch.Tensor):
            raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not")

        # Batch single image
        if image.ndim == 3:
            assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
            image = image.unsqueeze(0)

        # Batch and add channel dim for single mask
        if mask.ndim == 2:
            mask = mask.unsqueeze(0).unsqueeze(0)

        # Batch single mask or add channel dim
        if mask.ndim == 3:
            # Single batched mask, no channel dim or single mask not batched but channel dim
            if mask.shape[0] == 1:
                mask = mask.unsqueeze(0)

            # Batched masks no channel dim
            else:
                mask = mask.unsqueeze(1)

        assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
        assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
        assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"

        # Check image is in [-1, 1]
        if image.min() < -1 or image.max() > 1:
            raise ValueError("Image should be in [-1, 1] range")

        # Check mask is in [0, 1]
        if mask.min() < 0 or mask.max() > 1:
            raise ValueError("Mask should be in [0, 1] range")

        # Binarize mask
        mask[mask < 0.5] = 0
        mask[mask >= 0.5] = 1

        # Image as float32
        image = image.to(dtype=torch.float32)
    elif isinstance(mask, torch.Tensor):
        raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
    else:
        # preprocess image
        if isinstance(image, (Image.Image, np.ndarray)):
            image = [image]

        if isinstance(image, list) and isinstance(image[0], Image.Image):
            image = [np.array(i.convert("RGB"))[None, :] for i in image]
            image = np.concatenate(image, axis=0)
        elif isinstance(image, list) and isinstance(image[0], np.ndarray):
            image = np.concatenate([i[None, :] for i in image], axis=0)

        image = image.transpose(0, 3, 1, 2)
        image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0

        # preprocess mask
        if isinstance(mask, (Image.Image, np.ndarray)):
            mask = [mask]

        if isinstance(mask, list) and isinstance(mask[0], Image.Image):
            mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
            mask = mask.astype(np.float32) / 255.0
        elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
            mask = np.concatenate([m[None, None, :] for m in mask], axis=0)

        mask[mask < 0.5] = 0
        mask[mask >= 0.5] = 1
        mask = torch.from_numpy(mask)

    masked_image = image * (mask < 0.5)

    return mask, masked_image

# generate image
generator = torch.manual_seed(859311133)#0
def path2L(img_path):
    raw_image = cv2.imread(img_path)
    raw_image = cv2.cvtColor(raw_image,cv2.COLOR_BGR2LAB)
    raw_image_input = cv2.merge([raw_image[:,:,0],raw_image[:,:,0],raw_image[:,:,0]])
    return raw_image_input

def is_gray_scale(img, threshold=10):
    img = Image.fromarray(img)
    if len(img.getbands()) == 1:
        return True
    img1 = np.asarray(img.getchannel(channel=0), dtype=np.int16)
    img2 = np.asarray(img.getchannel(channel=1), dtype=np.int16)
    img3 = np.asarray(img.getchannel(channel=2), dtype=np.int16)
    diff1 = (img1 - img2).var()
    diff2 = (img2 - img3).var()
    diff3 = (img3 - img1).var()
    diff_sum = (diff1 + diff2 + diff3) / 3.0
    if diff_sum <= threshold:
        return True
    else:
        return False

def randn_tensor(
    shape,
    generator= None,
    device= None,
    dtype=None,
    layout= None,
):
    """A helper function to create random tensors on the desired `device` with the desired `dtype`. When
    passing a list of generators, you can seed each batch size individually. If CPU generators are passed, the tensor
    is always created on the CPU.
    """
    # device on which tensor is created defaults to device
    rand_device = device
    batch_size = shape[0]

    layout = layout or torch.strided
    device = device or torch.device("cpu")

    if generator is not None:
        gen_device_type = generator.device.type if not isinstance(generator, list) else generator[0].device.type
        if gen_device_type != device.type and gen_device_type == "cpu":
            rand_device = "cpu"
            if device != "mps":
                print("The passed generator was created on 'cpu' even though a tensor on {device} was expected.")
                # logger.info(
                #     f"The passed generator was created on 'cpu' even though a tensor on {device} was expected."
                #     f" Tensors will be created on 'cpu' and then moved to {device}. Note that one can probably"
                #     f" slighly speed up this function by passing a generator that was created on the {device} device."
                # )
        elif gen_device_type != device.type and gen_device_type == "cuda":
            raise ValueError(f"Cannot generate a {device} tensor from a generator of type {gen_device_type}.")

    # make sure generator list of length 1 is treated like a non-list
    if isinstance(generator, list) and len(generator) == 1:
        generator = generator[0]

    if isinstance(generator, list):
        shape = (1,) + shape[1:]
        latents = [
            torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype, layout=layout)
            for i in range(batch_size)
        ]
        latents = torch.cat(latents, dim=0).to(device)
    else:
        latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype, layout=layout).to(device)

    return latents

def add_noise(
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.IntTensor,
    ) -> torch.FloatTensor:
        betas = torch.linspace(0.00085, 0.0120, 1000, dtype=torch.float32)
        alphas = 1.0 - betas
        alphas_cumprod = torch.cumprod(alphas, dim=0)
        alphas_cumprod = alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype)
        timesteps = timesteps.to(original_samples.device)

        sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise

        return noisy_samples

def set_timesteps(num_inference_steps: int, timestep_spacing="leading",device=None):
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
        num_train_timesteps=1000
        if num_inference_steps > num_train_timesteps:
            raise ValueError(
                f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
                f" {num_train_timesteps} as the unet model trained with this scheduler can only handle"
                f" maximal {num_train_timesteps} timesteps."
            )

        num_inference_steps = num_inference_steps
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if timestep_spacing == "linspace":
            timesteps = (
                np.linspace(0, num_train_timesteps - 1, num_inference_steps)
                .round()[::-1]
                .copy()
                .astype(np.int64)
            )
        elif timestep_spacing == "leading":
            step_ratio = num_train_timesteps // num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
            # timesteps += steps_offset
        elif timestep_spacing == "trailing":
            step_ratio = num_train_timesteps / num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = np.round(np.arange(num_train_timesteps, 0, -step_ratio)).astype(np.int64)
            timesteps -= 1
        else:
            raise ValueError(
                f"{timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'."
            )

        timesteps = torch.from_numpy(timesteps).to(device)
        return timesteps

def get_timesteps(num_inference_steps, timesteps_set, strength, device):
        # get the original timestep using init_timestep
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

        t_start = max(num_inference_steps - init_timestep, 0)
        timesteps = timesteps_set[t_start * 1 :]

        return timesteps, num_inference_steps - t_start


def get_noised_image_latents(img,W,H,ddim_steps,strength,seed,device):
    img1 = [cv2.resize(img,(W,H))]
    img1 = np.concatenate([i[None, :] for i in img1], axis=0)
    img1 = img1.transpose(0, 3, 1, 2)
    img1 = torch.from_numpy(img1).to(dtype=torch.float32) /127.5 - 1.0
    
    image_latents=model.get_first_stage_encoding(model.encode_first_stage(img1.cuda())).detach()
    shape=image_latents.shape
    generator = torch.manual_seed(seed) 
    
    noise = randn_tensor(shape, generator=generator, device=device, dtype=torch.float32)
    
    timesteps_set=set_timesteps(ddim_steps,timestep_spacing="linspace", device=device)
    timesteps, num_inference_steps = get_timesteps(ddim_steps, timesteps_set, strength, device)
    latent_timestep = timesteps[1].repeat(1 * 1)

    init_latents = add_noise(image_latents, noise, torch.tensor(latent_timestep))
    for j in range(0, 1000, 100):
        
        x_samples=model.decode_first_stage(add_noise(image_latents, noise, torch.tensor(j)))
        init_image=(einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
    
        cv2.imwrite("./initlatents1/"+str(j)+"init_image.png",cv2.cvtColor(init_image[0],cv2.COLOR_RGB2BGR))
    return init_latents
                  
def process(using_deformable_vae,change_according_to_strokes,iterative_editing,input_image,hint_image,prompt, a_prompt, n_prompt, num_samples, image_resolution,  ddim_steps, guess_mode, strength, scale, sag_scale,SAG_influence_step, seed, eta):
    torch.cuda.empty_cache()
    with torch.no_grad():
        ref_flag=True
        input_image_ori=input_image
        if is_gray_scale(input_image):
            print("It is a greyscale image.")
            # mask=get_mask(input_image,hint_image)
        else:
            print("It is a color image.")
            input_image_ori=input_image
            input_image=cv2.cvtColor(input_image,cv2.COLOR_RGB2LAB)[:,:,0]
            input_image=cv2.merge([input_image,input_image,input_image])
        mask=get_mask(input_image_ori,hint_image)
        cv2.imwrite("gradio_mask1.png",mask)
        
        if iterative_editing:
            mask=255-mask
            if change_according_to_strokes:
                hint_image=mask/255.*hint_image+(1-mask/255.)*input_image_ori
            else:
                hint_image=mask/255.*input_image+(1-mask/255.)*input_image_ori
        else:
            hint_image=mask/255.*input_image+(1-mask/255.)*hint_image
        hint_image=hint_image.astype(np.uint8)
        if len(prompt)==0:
            image = Image.fromarray(input_image)
            image = vis_processors["eval"](image).unsqueeze(0).to(device)
            prompt = BLIP_model.generate({"image": image})[0]
            if "a black and white photo of" in prompt or "black and white photograph of" in prompt:
                prompt=prompt.replace(prompt[:prompt.find("of")+3],"")
        print(prompt)
        H_ori,W_ori,C_ori=input_image.shape
        img = resize_image(input_image, image_resolution)
        mask = resize_image(mask, image_resolution)
        hint_image =resize_image(hint_image,image_resolution)
        mask,masked_image=prepare_mask_and_masked_image(Image.fromarray(hint_image),Image.fromarray(mask))
        mask,masked_image_latents=encode_mask(mask,masked_image)
        H, W, C = img.shape
        
        # if ref_image is None:
        ref_image=np.array([[[0]*C]*W]*H).astype(np.float32)
        # print(ref_image.shape)
        # ref_flag=False
        ref_image=resize_image(ref_image,image_resolution)
        
        # cv2.imwrite("exemplar_image.png",cv2.cvtColor(ref_image,cv2.COLOR_RGB2BGR))    
        
        # ddim_steps=1
        control = torch.from_numpy(img.copy()).float().cuda() / 255.0
        control = torch.stack([control for _ in range(num_samples)], dim=0)
        control = einops.rearrange(control, 'b h w c -> b c h w').clone()
        
        if seed == -1:
            seed = random.randint(0, 65535)
        seed_everything(seed)

        ref_image=cv2.resize(ref_image,(W,H))
        
        ref_image=torch.from_numpy(ref_image).cuda().unsqueeze(0)
        
        init_latents=None
        
        if config.save_memory:
            model.low_vram_shift(is_diffusing=False)
            
        print("no reference images, using Frozen encoder")
        cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
        un_cond = {"c_concat": None if guess_mode else [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
        shape = (4, H // 8, W // 8)

        if config.save_memory:
            model.low_vram_shift(is_diffusing=True)
        noise = randn_tensor(shape, generator=generator, device=device, dtype=torch.float32)
        model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13)  # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
        samples, intermediates = ddim_sampler.sample(model,ddim_steps, num_samples,
                                                    shape, cond, mask=mask, masked_image_latents=masked_image_latents,verbose=False, eta=eta,
                                                    #  x_T=image_latents,
                                                    x_T=init_latents,
                                                    unconditional_guidance_scale=scale,
                                                    sag_scale = sag_scale,
                                                    SAG_influence_step=SAG_influence_step,
                                                    noise = noise,
                                                    unconditional_conditioning=un_cond)
        

        if config.save_memory:
            model.low_vram_shift(is_diffusing=False)

        if not using_deformable_vae:
            x_samples = model.decode_first_stage(samples)
        else:
            samples = model.decode_first_stage_before_vae(samples)
            gray_content_z=vae_model.get_gray_content_z(torch.from_numpy(img.copy()).float().cuda() / 255.0)
            # print(gray_content_z.shape)
            x_samples = vae_model.decode(samples,gray_content_z)
            
        x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
        
        #single image replace L channel
        results_ori = [x_samples[i] for i in range(num_samples)]
        results_ori=[cv2.resize(i,(W_ori,H_ori),interpolation=cv2.INTER_LANCZOS4) for i in results_ori]
        
        cv2.imwrite("result_ori.png",cv2.cvtColor(results_ori[0],cv2.COLOR_RGB2BGR))
        
        results_tmp=[cv2.cvtColor(np.array(i),cv2.COLOR_RGB2LAB) for i in results_ori]
        results=[cv2.merge([input_image[:,:,0],tmp[:,:,1],tmp[:,:,2]]) for tmp in results_tmp]
        results_mergeL=[cv2.cvtColor(np.asarray(i),cv2.COLOR_LAB2RGB) for i in results]#cv2.COLOR_LAB2BGR)
        cv2.imwrite("output.png",cv2.cvtColor(results_mergeL[0],cv2.COLOR_RGB2BGR))
    return results_mergeL 

def get_grayscale_img(img, progress=gr.Progress(track_tqdm=True)):
    torch.cuda.empty_cache()
    for j in tqdm.tqdm(range(1),desc="Uploading input..."):
        return img,"Uploading input image done."
    
block = gr.Blocks().queue()
with block:
    with gr.Row():
        gr.Markdown("## Control-Color")#("## Color-Anything")#Control Stable Diffusion with L channel
    with gr.Row():
        with gr.Column():
            # input_image = gr.Image(source='upload', type="numpy")
            grayscale_img = gr.Image(visible=False, type="numpy")
            input_image = gr.Image(source='upload',tool='color-sketch',interactive=True)
            Grayscale_button = gr.Button(value="Upload input image")
            text_out = gr.Textbox(value="Please upload input image first, then draw the strokes or input text prompts or give reference images as you wish.")
            prompt = gr.Textbox(label="Prompt")
            change_according_to_strokes = gr.Checkbox(label='Change according to strokes\' color', value=True)
            iterative_editing = gr.Checkbox(label='Only change the strokes\' area', value=False)
            using_deformable_vae = gr.Checkbox(label='Using deformable vae. (Less color overflow)', value=False)
            # with gr.Accordion("Input Reference", open=False):
            #     ref_image = gr.Image(source='upload', type="numpy")
            run_button = gr.Button(label="Upload prompts/strokes (optional) and Run",value="Upload prompts/strokes (optional) and Run")
            with gr.Accordion("Advanced options", open=False):
                num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
                image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
                strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
                guess_mode = gr.Checkbox(label='Guess Mode', value=False)
                #detect_resolution = gr.Slider(label="Depth Resolution", minimum=128, maximum=1024, value=384, step=1)
                ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
                scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=7.0, step=0.1)#value=9.0
                sag_scale = gr.Slider(label="SAG Scale", minimum=0.0, maximum=1.0, value=0.05, step=0.01)#0.08
                SAG_influence_step = gr.Slider(label="1000-SAG influence step", minimum=0, maximum=900, value=600, step=50)
                seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)#94433242802
                eta = gr.Number(label="eta (DDIM)", value=0.0)
                a_prompt = gr.Textbox(label="Added Prompt", value='best quality, detailed, real')#extremely detailed
                n_prompt = gr.Textbox(label="Negative Prompt",
                                      value='a black and white photo, longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
        with gr.Column():
            result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
            # grayscale_img = gr.Image(interactive=False,visible=False)
           
    Grayscale_button.click(fn=get_grayscale_img,inputs=input_image,outputs=[grayscale_img,text_out])
    ips = [using_deformable_vae,change_according_to_strokes,iterative_editing,grayscale_img,input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, strength, scale,sag_scale,SAG_influence_step, seed, eta]
    run_button.click(fn=process, inputs=ips, outputs=[result_gallery])


block.launch(server_name='0.0.0.0',share=True)