Spaces:
Runtime error
Runtime error
import torch | |
import pytorch_lightning as pl | |
import torch.nn.functional as F | |
from contextlib import contextmanager | |
from ldm.modules.diffusionmodules.model import Encoder, Decoder | |
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution | |
from ldm.util import instantiate_from_config | |
from ldm.modules.ema import LitEma | |
import random | |
import cv2 | |
# from cldm.model import create_model, load_state_dict | |
# model = create_model('./models/cldm_v15_inpainting.yaml') | |
# resume_path = "/data/2023text2edit/ControlNet/ckpt_inpainting_from5625+5625/epoch0_global-step3750.ckpt" | |
# model.load_state_dict(load_state_dict(resume_path, location='cpu'),strict=True) | |
# model.half() | |
# model.cuda() | |
class AutoencoderKL(pl.LightningModule): | |
def __init__(self, | |
ddconfig, | |
lossconfig, | |
embed_dim, | |
ckpt_path=None, | |
ignore_keys=[], | |
image_key="input", | |
output_key="jpg", | |
gray_image_key="gray", | |
colorize_nlabels=None, | |
monitor=None, | |
ema_decay=None, | |
learn_logvar=False | |
): | |
super().__init__() | |
self.learn_logvar = learn_logvar | |
self.image_key = image_key | |
self.gray_image_key = gray_image_key | |
self.output_key=output_key | |
self.encoder = Encoder(**ddconfig) | |
self.decoder = Decoder(**ddconfig) | |
self.loss = instantiate_from_config(lossconfig) | |
assert ddconfig["double_z"] | |
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1) | |
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) | |
self.embed_dim = embed_dim | |
# model = create_model('./models/cldm_v15_inpainting.yaml') | |
# resume_path = "/data/2023text2edit/ControlNet/ckpt_inpainting_from5625+5625/epoch0_global-step3750.ckpt" | |
# model.load_state_dict(load_state_dict(resume_path, location='cpu'),strict=True) | |
# model.half() | |
# self.model=model.cuda() | |
# # self.model=model.eval() | |
# for param in self.model.parameters(): | |
# param.requires_grad = False | |
if colorize_nlabels is not None: | |
assert type(colorize_nlabels)==int | |
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1)) | |
if monitor is not None: | |
self.monitor = monitor | |
self.use_ema = ema_decay is not None | |
if self.use_ema: | |
self.ema_decay = ema_decay | |
assert 0. < ema_decay < 1. | |
self.model_ema = LitEma(self, decay=ema_decay) | |
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") | |
if ckpt_path is not None: | |
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) | |
def init_from_ckpt(self, path, ignore_keys=list()): | |
sd = torch.load(path, map_location="cpu")["state_dict"] | |
keys = list(sd.keys()) | |
for k in keys: | |
for ik in ignore_keys: | |
if k.startswith(ik): | |
print("Deleting key {} from state_dict.".format(k)) | |
del sd[k] | |
self.load_state_dict(sd, strict=False) | |
print(f"Restored from {path}") | |
def ema_scope(self, context=None): | |
if self.use_ema: | |
self.model_ema.store(self.parameters()) | |
self.model_ema.copy_to(self) | |
if context is not None: | |
print(f"{context}: Switched to EMA weights") | |
try: | |
yield None | |
finally: | |
if self.use_ema: | |
self.model_ema.restore(self.parameters()) | |
if context is not None: | |
print(f"{context}: Restored training weights") | |
def on_train_batch_end(self, *args, **kwargs): | |
if self.use_ema: | |
self.model_ema(self) | |
def encode(self, x): | |
h = self.encoder(x) | |
moments = self.quant_conv(h) | |
posterior = DiagonalGaussianDistribution(moments) | |
return posterior | |
def decode(self, z,gray_content_z): | |
z = self.post_quant_conv(z) | |
gray_content_z = self.post_quant_conv(gray_content_z) | |
dec = self.decoder(z,gray_content_z) | |
return dec | |
def forward(self, input,gray_image, sample_posterior=True): | |
posterior = self.encode(input) | |
if sample_posterior: | |
z = posterior.sample() | |
else: | |
z = posterior.mode() | |
gray_posterior = self.encode(gray_image) | |
if sample_posterior: | |
gray_content_z = gray_posterior.sample() | |
else: | |
gray_content_z = gray_posterior.mode() | |
dec = self.decode(z,gray_content_z) | |
return dec, posterior | |
def get_input(self, batch,k0, k1,k2): | |
# print(batch) | |
# print(k) | |
# x = batch[k] | |
# if len(x.shape) == 3: | |
# x = x[..., None] | |
# x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float() | |
gray_image = batch[k2] | |
if len(gray_image.shape) == 3: | |
gray_image = gray_image[..., None] | |
gray_image = gray_image.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float() | |
# t=random.randint(1,100)#120 | |
# print(t) | |
# model=model.cuda() | |
x = batch[k0]#self.model.get_noised_images(((gt.squeeze(0)+1.0)/2.0).permute(2,0,1).to(memory_format=torch.contiguous_format).type(torch.HalfTensor).cuda(),t=torch.Tensor([t]).long().cuda()) | |
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float() | |
# x = x.float() | |
# torch.cuda.empty_cache() | |
# print(input.shape) | |
# cv2.imwrite("tttt.png",cv2.cvtColor(x.squeeze(0).permute(1,2,0).cpu().numpy()*255.0, cv2.COLOR_RGB2BGR)) | |
# x = x*2.0-1.0 | |
# x = x.squeeze(0).permute(1,2,0).cpu().numpy()*2.0-1.0 | |
# if len(x.shape) == 3: | |
# x = x[..., None] | |
# x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format) | |
gt = batch[k1] | |
if len(gt.shape) == 3: | |
gt = gt[..., None] | |
gt = gt.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float() | |
return gt,x,gray_image | |
def training_step(self, batch, batch_idx, optimizer_idx): | |
with torch.no_grad(): | |
outputs,inputs,gray_images = self.get_input(batch, self.image_key,self.output_key,self.gray_image_key) | |
reconstructions, posterior = self(inputs,gray_images) | |
if optimizer_idx == 0: | |
# train encoder+decoder+logvar | |
aeloss, log_dict_ae = self.loss(outputs, reconstructions, posterior, optimizer_idx, self.global_step, | |
last_layer=self.get_last_layer(), split="train") | |
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) | |
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False) | |
# print(aeloss) | |
return aeloss | |
if optimizer_idx == 1: | |
# train the discriminator | |
discloss, log_dict_disc = self.loss(outputs, reconstructions, posterior, optimizer_idx, self.global_step, | |
last_layer=self.get_last_layer(), split="train") | |
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True) | |
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False) | |
# print(discloss) | |
return discloss | |
def validation_step(self, batch, batch_idx): | |
log_dict = self._validation_step(batch, batch_idx) | |
with self.ema_scope(): | |
log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema") | |
return log_dict | |
def _validation_step(self, batch, batch_idx, postfix=""): | |
outputs,inputs,gray_images = self.get_input(batch, self.image_key,self.output_key,self.gray_image_key) | |
reconstructions, posterior = self(inputs,gray_images) | |
aeloss, log_dict_ae = self.loss(outputs, reconstructions, posterior, 0, self.global_step, | |
last_layer=self.get_last_layer(), split="val"+postfix) | |
discloss, log_dict_disc = self.loss(outputs, reconstructions, posterior, 1, self.global_step, | |
last_layer=self.get_last_layer(), split="val"+postfix) | |
self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"]) | |
self.log_dict(log_dict_ae) | |
self.log_dict(log_dict_disc) | |
return self.log_dict | |
def configure_optimizers(self): | |
lr = self.learning_rate | |
# ae_params_list = list(self.encoder.parameters()) + list(self.decoder.parameters()) + list( | |
# self.quant_conv.parameters()) + list(self.post_quant_conv.parameters()) | |
# for name,param in self.decoder.named_parameters(): | |
# if "dcn" in name: | |
# print(name) | |
ae_params_list = list(self.decoder.dcn_in.parameters())+list(self.decoder.mid.block_1.dcn1.parameters())+list(self.decoder.mid.block_1.dcn2.parameters())+list(self.decoder.mid.block_2.dcn1.parameters())+list(self.decoder.mid.block_2.dcn2.parameters()) | |
# print(ae_params_list) | |
# for i in ae_params_list: | |
# print(i) | |
if self.learn_logvar: | |
print(f"{self.__class__.__name__}: Learning logvar") | |
ae_params_list.append(self.loss.logvar) | |
opt_ae = torch.optim.Adam(ae_params_list, | |
lr=lr, betas=(0.5, 0.9)) | |
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), | |
lr=lr, betas=(0.5, 0.9)) | |
return [opt_ae, opt_disc], [] | |
def get_last_layer(self): | |
return self.decoder.conv_out.weight | |
def get_gray_content_z(self,gray_image): | |
# if len(gray_image.shape) == 3: | |
# gray_image = gray_image[..., None] | |
gray_image = gray_image.unsqueeze(0).permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float() | |
gray_content_z=self.encode(gray_image) | |
gray_content_z = gray_content_z.sample() | |
return gray_content_z | |
def log_images(self, batch, only_inputs=False, log_ema=False, **kwargs): | |
log = dict() | |
gt,x,gray_image = self.get_input(batch, self.image_key,self.output_key,self.gray_image_key) | |
log['gt']=gt | |
x = x.to(self.device) | |
gray_image = gray_image.to(self.device) | |
if not only_inputs: | |
xrec, posterior = self(x,gray_image) | |
if x.shape[1] > 3: | |
# colorize with random projection | |
assert xrec.shape[1] > 3 | |
x = self.to_rgb(x) | |
gray_image = self.to_rgb(gray_image) | |
xrec = self.to_rgb(xrec) | |
gray_content_z=self.encode(gray_image) | |
gray_content_z = gray_content_z.sample() | |
log["samples"] = self.decode(torch.randn_like(posterior.sample()),gray_content_z) | |
log["reconstructions"] = xrec | |
if log_ema or self.use_ema: | |
with self.ema_scope(): | |
xrec_ema, posterior_ema = self(x) | |
if x.shape[1] > 3: | |
# colorize with random projection | |
assert xrec_ema.shape[1] > 3 | |
xrec_ema = self.to_rgb(xrec_ema) | |
log["samples_ema"] = self.decode(torch.randn_like(posterior_ema.sample())) | |
log["reconstructions_ema"] = xrec_ema | |
log["inputs"] = x | |
return log | |
def to_rgb(self, x): | |
assert self.image_key == "segmentation" | |
if not hasattr(self, "colorize"): | |
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) | |
x = F.conv2d(x, weight=self.colorize) | |
x = 2.*(x-x.min())/(x.max()-x.min()) - 1. | |
return x | |
class IdentityFirstStage(torch.nn.Module): | |
def __init__(self, *args, vq_interface=False, **kwargs): | |
self.vq_interface = vq_interface | |
super().__init__() | |
def encode(self, x, *args, **kwargs): | |
return x | |
def decode(self, x, *args, **kwargs): | |
return x | |
def quantize(self, x, *args, **kwargs): | |
if self.vq_interface: | |
return x, None, [None, None, None] | |
return x | |
def forward(self, x, *args, **kwargs): | |
return x | |