Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
from torch.utils.checkpoint import checkpoint | |
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel, AutoProcessor, CLIPVisionModel, CLIPImageProcessor | |
import open_clip | |
from ldm.util import default, count_params | |
import kornia | |
# import clip | |
from einops import rearrange | |
class AbstractEncoder(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def encode(self, *args, **kwargs): | |
raise NotImplementedError | |
class IdentityEncoder(AbstractEncoder): | |
def encode(self, x): | |
return x | |
class ClassEmbedder(nn.Module): | |
def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1): | |
super().__init__() | |
self.key = key | |
self.embedding = nn.Embedding(n_classes, embed_dim) | |
self.n_classes = n_classes | |
self.ucg_rate = ucg_rate | |
def forward(self, batch, key=None, disable_dropout=False): | |
if key is None: | |
key = self.key | |
# this is for use in crossattn | |
c = batch[key][:, None] | |
if self.ucg_rate > 0. and not disable_dropout: | |
mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate) | |
c = mask * c + (1-mask) * torch.ones_like(c)*(self.n_classes-1) | |
c = c.long() | |
c = self.embedding(c) | |
return c | |
def get_unconditional_conditioning(self, bs, device="cuda"): | |
uc_class = self.n_classes - 1 # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000) | |
uc = torch.ones((bs,), device=device) * uc_class | |
uc = {self.key: uc} | |
return uc | |
def disabled_train(self, mode=True): | |
"""Overwrite model.train with this function to make sure train/eval mode | |
does not change anymore.""" | |
return self | |
class FrozenT5Embedder(AbstractEncoder): | |
"""Uses the T5 transformer encoder for text""" | |
def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl | |
super().__init__() | |
self.tokenizer = T5Tokenizer.from_pretrained(version) | |
self.transformer = T5EncoderModel.from_pretrained(version) | |
self.device = device | |
self.max_length = max_length # TODO: typical value? | |
if freeze: | |
self.freeze() | |
def freeze(self): | |
self.transformer = self.transformer.eval() | |
#self.train = disabled_train | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, text): | |
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
tokens = batch_encoding["input_ids"].to(self.device) | |
outputs = self.transformer(input_ids=tokens) | |
z = outputs.last_hidden_state | |
return z | |
def encode(self, text): | |
return self(text) | |
class FrozenCLIPEmbedder(AbstractEncoder): | |
"""Uses the CLIP transformer encoder for text (from huggingface)""" | |
LAYERS = [ | |
"last", | |
"pooled", | |
"hidden" | |
] | |
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77, | |
freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32 | |
super().__init__() | |
assert layer in self.LAYERS | |
self.tokenizer = CLIPTokenizer.from_pretrained(version) | |
self.transformer = CLIPTextModel.from_pretrained(version) | |
self.device = device | |
self.max_length = max_length | |
if freeze: | |
self.freeze() | |
self.layer = layer | |
self.layer_idx = layer_idx | |
if layer == "hidden": | |
assert layer_idx is not None | |
assert 0 <= abs(layer_idx) <= 12 | |
def freeze(self): | |
self.transformer = self.transformer.eval() | |
#self.train = disabled_train | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, text): | |
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
tokens = batch_encoding["input_ids"].to(self.device) | |
outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden") | |
if self.layer == "last": | |
z = outputs.last_hidden_state | |
elif self.layer == "pooled": | |
z = outputs.pooler_output[:, None, :] | |
else: | |
z = outputs.hidden_states[self.layer_idx] | |
# print(z.shape) | |
return z | |
def encode(self, text): | |
return self(text) | |
# class FrozenCLIPDualEmbedder(AbstractEncoder): | |
# """Uses the CLIP transformer encoder for text (from huggingface)""" | |
# LAYERS = [ | |
# "last", | |
# "pooled", | |
# "hidden" | |
# ] | |
# def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77, | |
# freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32 | |
# super().__init__() | |
# assert layer in self.LAYERS | |
# self.tokenizer = CLIPTokenizer.from_pretrained(version) | |
# self.transformer = CLIPTextModel.from_pretrained(version) | |
# # self.processor = CLIPImageProcessor.from_pretrained(version) | |
# # self.imagetransformer = CLIPVisionModel.from_pretrained(version) | |
# self.ImageEmbedder=FrozenClipImageEmbedder() | |
# self.device = device | |
# self.max_length = max_length | |
# if freeze: | |
# self.freeze() | |
# self.layer = layer | |
# self.layer_idx = layer_idx | |
# if layer == "hidden": | |
# assert layer_idx is not None | |
# assert 0 <= abs(layer_idx) <= 12 | |
# def freeze(self): | |
# self.transformer = self.transformer.eval() | |
# #self.train = disabled_train | |
# for name,param in self.named_parameters(): | |
# if not "imagetransformer" in name and not "imageconv" in name and not "ImageEmbedder" in name: | |
# # print(name,param) | |
# param.requires_grad = False | |
# else: | |
# param.requires_grad = True | |
# # print(name) | |
# def forward(self, text): | |
# # print("text:",len(text)) | |
# # if len(text)==1: | |
# # txt=text[0] | |
# # hint_image=None | |
# # elif len(text)==2: | |
# # txt,hint_image=text | |
# txt,hint_image=text | |
# # print(hint_image.shape) | |
# batch_encoding = self.tokenizer(txt, truncation=True, max_length=self.max_length, return_length=True, | |
# return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
# tokens = batch_encoding["input_ids"].to(self.device) | |
# outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden") | |
# # input_image_batch_encoding = self.processor(input_image,return_tensors="pt") | |
# # ii_tokens = input_image_batch_encoding["input_ids"].to(self.device) | |
# # ii_outputs = self.imagetransformer(input_ids=ii_tokens, output_hidden_states=self.layer=="hidden") | |
# # hint_image_batch_encoding = self.processor(hint_image,return_tensors="pt") | |
# # hi_tokens = hint_image_batch_encoding["input_ids"].to(self.device) | |
# # hi_outputs = self.imagetransformer(input_ids=hi_tokens, output_hidden_states=self.layer=="hidden") | |
# # hint_outputs = hi_outputs-ii_outputs | |
# # if hint_image==None: | |
# # if self.layer == "last": | |
# # z = outputs.last_hidden_state | |
# # elif self.layer == "pooled": | |
# # z = outputs.pooler_output[:, None, :] | |
# # else: | |
# # z = outputs.hidden_states[self.layer_idx] | |
# # # print("z",z.shape) | |
# # return z | |
# hint_outputs=self.ImageEmbedder(hint_image) | |
# # print("hint_outputs",hint_outputs.shape) | |
# # print("prompt",outputs.last_hidden_state.shape) | |
# if self.layer == "last": | |
# z = torch.cat((outputs.last_hidden_state,hint_outputs.unsqueeze(0)),1)#torch.cat((outputs.last_hidden_state,hint_outputs.last_hidden_state),1)#torch.cat((outputs.last_hidden_state,hint_outputs.unsqueeze(0)),1) | |
# elif self.layer == "pooled": | |
# z = torch.cat((outputs.pooler_output[:, None, :],hint_outputs.unsqueeze(0)),1) | |
# else: | |
# z = torch.cat((outputs.hidden_states[self.layer_idx],hint_outputs.unsqueeze(0)),1) | |
# # print("z",z.shape) | |
# return z | |
# def encode(self, text): | |
# # print(text.shape) | |
# return self(text) | |
class FrozenCLIPDualEmbedder(AbstractEncoder): | |
"""Uses the CLIP transformer encoder for text (from huggingface)""" | |
LAYERS = [ | |
"last", | |
"pooled", | |
"hidden" | |
] | |
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77, | |
freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32 | |
super().__init__() | |
assert layer in self.LAYERS | |
self.tokenizer = CLIPTokenizer.from_pretrained(version) | |
self.transformer = CLIPTextModel.from_pretrained(version) | |
# self.processor = CLIPImageProcessor.from_pretrained(version) | |
# self.imagetransformer = CLIPVisionModel.from_pretrained(version) | |
self.ImageEmbedder=FrozenClipImageEmbedder() | |
self.device = device | |
self.max_length = max_length | |
if freeze: | |
self.freeze() | |
self.layer = layer | |
self.layer_idx = layer_idx | |
if layer == "hidden": | |
assert layer_idx is not None | |
assert 0 <= abs(layer_idx) <= 12 | |
print("pooled") | |
def freeze(self): | |
# self.transformer = self.transformer.eval() | |
#self.train = disabled_train | |
for name,param in self.named_parameters(): | |
# print(name) | |
# if not "imagetransformer" in name and not "imageconv" in name and not "ImageEmbedder" in name: | |
param.requires_grad = False | |
# if not "ImageEmbedder" in name: | |
# # print(name,param) | |
# param.requires_grad = False | |
# else: | |
# param.requires_grad = True | |
def forward(self, text): | |
# pdb.set_trace() | |
# print("text:",len(text)) | |
# if len(text)==1: | |
# txt=text[0] | |
# hint_image=None | |
# elif len(text)==2: | |
# txt,hint_image=text | |
txt,hint_image=text | |
# if hint_image==None: | |
# batch_encoding = self.tokenizer(txt, truncation=True, max_length=self.max_length, return_length=True, | |
# return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
# tokens = batch_encoding["input_ids"].to(self.device) | |
# outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden") | |
# prompt_outputs=outputs.last_hidden_state | |
# return prompt_outputs | |
# else: | |
# hint_image.requires_grad_(True) | |
# print(hint_image.shape) | |
batch_encoding = self.tokenizer(txt, truncation=True, max_length=self.max_length, return_length=True, | |
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
tokens = batch_encoding["input_ids"].to(self.device) | |
outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden") | |
prompt_outputs=outputs.last_hidden_state | |
# prompt_outputs=outputs.last_hidden_state.detach().requires_grad_(True) | |
# prompt_outputs.retain_grad() | |
# input_image_batch_encoding = self.processor(input_image,return_tensors="pt") | |
# ii_tokens = input_image_batch_encoding["input_ids"].to(self.device) | |
# ii_outputs = self.imagetransformer(input_ids=ii_tokens, output_hidden_states=self.layer=="hidden") | |
# hint_image_batch_encoding = self.processor(hint_image,return_tensors="pt") | |
# hi_tokens = hint_image_batch_encoding["input_ids"].to(self.device) | |
# hi_outputs = self.imagetransformer(input_ids=hi_tokens, output_hidden_states=self.layer=="hidden") | |
# hint_outputs = hi_outputs-ii_outputs | |
# if hint_image==None: | |
# if self.layer == "last": | |
# z = outputs.last_hidden_state | |
# elif self.layer == "pooled": | |
# z = outputs.pooler_output[:, None, :] | |
# else: | |
# z = outputs.hidden_states[self.layer_idx] | |
# # print("z",z.shape) | |
# return z | |
# pdb.set_trace() | |
outputs = self.ImageEmbedder(hint_image) | |
# image_embeds = outputs.pooler_output #outputs.image_embeds | |
image_embeds = outputs.pooler_output | |
# print(image_embeds.shape) | |
# last_hidden_state = outputs.last_hidden_state | |
# pooled_output = outputs.pooler_output | |
# print("hint_outputs",last_hidden_state.shape) | |
# print("pooled_output", pooled_output.shape) | |
# print("prompt",prompt_outputs.shape) | |
if self.layer == "last": | |
# print(prompt_outputs.shape) | |
# print(image_embeds.shape) | |
z = torch.cat((prompt_outputs,image_embeds.unsqueeze(1)),1)#,hint_outputs.unsqueeze(0)),1) | |
# z = torch.cat((prompt_outputs,hint_outputs.last_hidden_state),1)#,hint_outputs.unsqueeze(0)),1) | |
elif self.layer == "pooled": | |
z = torch.cat((outputs.pooler_output[:, None, :],hint_outputs.unsqueeze(0)),1) | |
else: | |
z = torch.cat((outputs.hidden_states[self.layer_idx],hint_outputs.unsqueeze(0)),1) | |
return z | |
# def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77, | |
# freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32 | |
# super().__init__() | |
# assert layer in self.LAYERS | |
# # self.processor = CLIPImageProcessor.from_pretrained(version) | |
# # self.imagetransformer = CLIPVisionModel.from_pretrained(version) | |
# self.ImageEmbedder=FrozenClipImageEmbedder() | |
# self.device = device | |
# self.max_length = max_length | |
# if freeze: | |
# self.freeze() | |
# self.layer = layer | |
# self.layer_idx = layer_idx | |
# if layer == "hidden": | |
# assert layer_idx is not None | |
# assert 0 <= abs(layer_idx) <= 12 | |
# def freeze(self): | |
# #self.train = disabled_train | |
# for name,param in self.named_parameters(): | |
# if not "imagetransformer" in name and not "imageconv" in name and not "ImageEmbedder" in name: | |
# # print(name,param) | |
# param.requires_grad = False | |
# else: | |
# param.requires_grad = True | |
# # print(name) | |
# def forward(self, txt,hint_image): | |
# # pdb.set_trace() | |
# hint_outputs=self.ImageEmbedder(hint_image) | |
# # print("hint_outputs",hint_outputs.shape) | |
# # print("prompt",outputs.last_hidden_state.shape) | |
# if self.layer == "last": | |
# print(txt.shape) | |
# print(hint_outputs.last_hidden_state.shape) | |
# z = torch.cat((txt,hint_outputs.last_hidden_state),1)#,hint_outputs.unsqueeze(0)),1) | |
# elif self.layer == "pooled": | |
# z = torch.cat((txt,hint_outputs.unsqueeze(0)),1) | |
# else: | |
# z = torch.cat((txt,hint_outputs.unsqueeze(0)),1) | |
# # print("z",z.shape) | |
# return z | |
def encode(self, text): | |
# if isinstance(text, dict): | |
# txt,hint_image=text['c_crossattn'][0] | |
# txt=txt | |
# else: | |
# txt,hint_image=text | |
# txt = text | |
txt, x = text | |
# if x==None: | |
# return self((txt,x)) | |
# print(x.shape) | |
if len(x.shape) == 3: | |
x = x[..., None] | |
x = rearrange(x, 'b h w c -> b c h w') | |
x = x.to(memory_format=torch.contiguous_format).float() | |
x = [x[i] for i in range(x.shape[0])] | |
return self((txt, x)) | |
class FrozenOpenCLIPEmbedder(AbstractEncoder): | |
""" | |
Uses the OpenCLIP transformer encoder for text | |
""" | |
LAYERS = [ | |
#"pooled", | |
"last", | |
"penultimate" | |
] | |
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77, | |
freeze=True, layer="last"): | |
super().__init__() | |
assert layer in self.LAYERS | |
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version) | |
del model.visual | |
self.model = model | |
self.device = device | |
self.max_length = max_length | |
if freeze: | |
self.freeze() | |
self.layer = layer | |
if self.layer == "last": | |
self.layer_idx = 0 | |
elif self.layer == "penultimate": | |
self.layer_idx = 1 | |
else: | |
raise NotImplementedError() | |
def freeze(self): | |
self.model = self.model.eval() | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, text): | |
tokens = open_clip.tokenize(text) | |
z = self.encode_with_transformer(tokens.to(self.device)) | |
return z | |
def encode_with_transformer(self, text): | |
x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model] | |
x = x + self.model.positional_embedding | |
x = x.permute(1, 0, 2) # NLD -> LND | |
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask) | |
x = x.permute(1, 0, 2) # LND -> NLD | |
x = self.model.ln_final(x) | |
return x | |
def text_transformer_forward(self, x: torch.Tensor, attn_mask = None): | |
for i, r in enumerate(self.model.transformer.resblocks): | |
if i == len(self.model.transformer.resblocks) - self.layer_idx: | |
break | |
if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting(): | |
x = checkpoint(r, x, attn_mask) | |
else: | |
x = r(x, attn_mask=attn_mask) | |
return x | |
def encode(self, text): | |
return self(text) | |
class FrozenCLIPT5Encoder(AbstractEncoder): | |
def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda", | |
clip_max_length=77, t5_max_length=77): | |
super().__init__() | |
self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length) | |
self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length) | |
print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, " | |
f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params.") | |
def encode(self, text): | |
return self(text) | |
def forward(self, text): | |
clip_z = self.clip_encoder.encode(text) | |
t5_z = self.t5_encoder.encode(text) | |
return [clip_z, t5_z] | |
class FrozenClipImageEmbedder(nn.Module): | |
""" | |
Uses the CLIP image encoder. | |
""" | |
def __init__( | |
self, | |
model='ViT-B/16', #ViT-L/14 | |
jit=False, | |
device='cuda' if torch.cuda.is_available() else 'cpu', | |
antialias=False, | |
): | |
super().__init__() | |
# self.model, _ = clip.load(name=model, device=device, jit=jit) | |
# self.model.requires_grad_(True) | |
self.imageconv = nn.Conv2d(4,3,(3,3),padding=1)#.cuda() | |
self.antialias = antialias | |
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) | |
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) | |
self.device = device | |
self.processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32") | |
self.model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32") | |
# self.imagetransformer = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch16") | |
# def preprocess(self, x): | |
# # normalize to [0,1] | |
# # print(x.shape) | |
# # pdb.set_trace() | |
# x = kornia.geometry.resize(x, (224, 224), | |
# interpolation='bicubic',align_corners=True, | |
# antialias=self.antialias) | |
# # print("after",x.shape) | |
# # x = (x + 1.) / 2. | |
# print(x) | |
# # renormalize according to clip | |
# x = kornia.enhance.normalize(x, self.mean, self.std) | |
# # print("after1111111",x.shape) | |
# return x | |
def forward(self, x): | |
# x is assumed to be in range [-1,1] | |
# pdb.set_trace() | |
# with torch.set_grad_enabled(True): | |
# print("before",x.shape) | |
# x=self.imageconv(x) | |
# print("after",x.shape) | |
# x = x.tolist() | |
x = self.processor(x, return_tensors="pt") | |
# print(x) | |
# pdb.set_trace() | |
x['pixel_values'] = x['pixel_values'].to(self.device) | |
outputs = self.model(**x) | |
return outputs | |
# class FrozenClipImageEmbedder(nn.Module): | |
# """ | |
# Uses the CLIP image encoder. | |
# """ | |
# def __init__( | |
# self, | |
# model='ViT-B/16', | |
# jit=False, | |
# device='cuda' if torch.cuda.is_available() else 'cpu', | |
# antialias=False, | |
# ): | |
# super().__init__() | |
# self.model, _ = clip.load(name=model, device=device, jit=jit) | |
# # self.imageconv = nn.Conv2d(4,3,(3,3),stride=2) | |
# self.antialias = antialias | |
# self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) | |
# self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) | |
# def preprocess(self, x): | |
# # normalize to [0,1] | |
# # print(x.shape) | |
# x = kornia.geometry.resize(x, (224, 224), | |
# interpolation='bicubic',align_corners=True, | |
# antialias=self.antialias) | |
# # print("after",x.shape) | |
# x = (x + 1.) / 2. | |
# # renormalize according to clip | |
# x = kornia.enhance.normalize(x, self.mean, self.std) | |
# # print("after1111111",x.shape) | |
# return x | |
# def forward(self, x): | |
# # x is assumed to be in range [-1,1] | |
# # x=self.imageconv(x) | |
# return self.model.encode_image(self.preprocess(x)) | |
# class FrozenClipImageEmbedder(nn.Module): | |
# """ | |
# Uses the CLIP image encoder. | |
# """ | |
# def __init__( | |
# self, | |
# model='ViT-B/16', #ViT-L/14 | |
# jit=False, | |
# device='cuda' if torch.cuda.is_available() else 'cpu', | |
# antialias=False, | |
# ): | |
# super().__init__() | |
# self.model, _ = clip.load(name=model, device=device, jit=jit) | |
# # self.model.requires_grad_(True) | |
# # self.imageconv = nn.Conv2d(4,3,(3,3),padding=1)#.cuda()#padding=1 #stride=2 | |
# self.antialias = antialias | |
# self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) | |
# self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) | |
# # self.processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14") | |
# self.imagetransformer = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch16") | |
# def preprocess(self, x): | |
# # normalize to [0,1] | |
# # print(x.shape) | |
# # pdb.set_trace() | |
# x = kornia.geometry.resize(x, (224, 224), | |
# interpolation='bicubic',align_corners=True, | |
# antialias=self.antialias) | |
# # print("after",x.shape) | |
# x = (x + 1.) / 2. | |
# # renormalize according to clip | |
# x = kornia.enhance.normalize(x, self.mean, self.std) | |
# # print("after1111111",x.shape) | |
# return x | |
# def forward(self, x): | |
# # x is assumed to be in range [-1,1] | |
# # x=self.imageconv(x) | |
# return self.imagetransformer(self.preprocess(x), output_hidden_states="last"=="hidden") #self.model.encode_image(self.preprocess(x)) | |