Spaces:
Runtime error
Runtime error
"""SAMPLING ONLY.""" | |
import torch | |
import numpy as np | |
from tqdm import tqdm | |
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor | |
import torch.nn.functional as F | |
import cv2 | |
# Gaussian blur | |
def gaussian_blur_2d(img, kernel_size, sigma): | |
ksize_half = (kernel_size - 1) * 0.5 | |
x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size) | |
pdf = torch.exp(-0.5 * (x / sigma).pow(2)) | |
x_kernel = pdf / pdf.sum() | |
x_kernel = x_kernel.to(device=img.device, dtype=img.dtype) | |
kernel2d = torch.mm(x_kernel[:, None], x_kernel[None, :]) | |
kernel2d = kernel2d.expand(img.shape[-3], 1, kernel2d.shape[0], kernel2d.shape[1]) | |
padding = [kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2] | |
img = F.pad(img, padding, mode="reflect") | |
img = F.conv2d(img, kernel2d, groups=img.shape[-3]) | |
return img | |
# processes and stores attention probabilities | |
class CrossAttnStoreProcessor: | |
def __init__(self): | |
self.attention_probs = None | |
def __call__( | |
self, | |
attn, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
): | |
batch_size, sequence_length, _ = hidden_states.shape | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
query = attn.head_to_batch_dim(query) | |
key = attn.head_to_batch_dim(key) | |
value = attn.head_to_batch_dim(value) | |
self.attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
hidden_states = torch.bmm(self.attention_probs, value) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
return hidden_states | |
class DDIMSampler(object): | |
def __init__(self, model, schedule="linear", **kwargs): | |
super().__init__() | |
self.model = model | |
self.ddpm_num_timesteps = model.num_timesteps | |
self.schedule = schedule | |
def register_buffer(self, name, attr): | |
if type(attr) == torch.Tensor: | |
if attr.device != torch.device("cuda"): | |
attr = attr.to(torch.device("cuda")) | |
setattr(self, name, attr) | |
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True): | |
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps, | |
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose) | |
alphas_cumprod = self.model.alphas_cumprod | |
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep' | |
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device) | |
self.register_buffer('betas', to_torch(self.model.betas)) | |
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) | |
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev)) | |
# calculations for diffusion q(x_t | x_{t-1}) and others | |
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu()))) | |
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu()))) | |
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu()))) | |
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu()))) | |
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1))) | |
# ddim sampling parameters | |
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(), | |
ddim_timesteps=self.ddim_timesteps, | |
eta=ddim_eta,verbose=verbose) | |
self.register_buffer('ddim_sigmas', ddim_sigmas) | |
self.register_buffer('ddim_alphas', ddim_alphas) | |
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev) | |
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas)) | |
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt( | |
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * ( | |
1 - self.alphas_cumprod / self.alphas_cumprod_prev)) | |
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps) | |
def sample(self, | |
S, | |
batch_size, | |
shape, | |
conditioning=None, | |
callback=None, | |
normals_sequence=None, | |
img_callback=None, | |
quantize_x0=False, | |
eta=0., | |
mask=None, | |
masked_image_latents=None, | |
x0=None, | |
temperature=1., | |
noise_dropout=0., | |
score_corrector=None, | |
corrector_kwargs=None, | |
verbose=True, | |
x_T=None, | |
log_every_t=100, | |
unconditional_guidance_scale=1., | |
sag_scale=0.75, | |
SAG_influence_step=600, | |
noise = None, | |
unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... | |
dynamic_threshold=None, | |
ucg_schedule=None, | |
**kwargs | |
): | |
if conditioning is not None: | |
if isinstance(conditioning, dict): | |
ctmp = conditioning[list(conditioning.keys())[0]] | |
while isinstance(ctmp, list): ctmp = ctmp[0] | |
cbs = ctmp.shape[0] | |
if cbs != batch_size: | |
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") | |
elif isinstance(conditioning, list): | |
for ctmp in conditioning: | |
if ctmp.shape[0] != batch_size: | |
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}") | |
else: | |
if conditioning.shape[0] != batch_size: | |
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}") | |
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose) | |
# sampling | |
C, H, W = shape | |
size = (batch_size, C, H, W) | |
print(f'Data shape for DDIM sampling is {size}, eta {eta}') | |
samples, intermediates = self.ddim_sampling(conditioning, size, | |
callback=callback, | |
img_callback=img_callback, | |
quantize_denoised=quantize_x0, | |
mask=mask,masked_image_latents=masked_image_latents, x0=x0, | |
ddim_use_original_steps=False, | |
noise_dropout=noise_dropout, | |
temperature=temperature, | |
score_corrector=score_corrector, | |
corrector_kwargs=corrector_kwargs, | |
x_T=x_T, | |
log_every_t=log_every_t, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
sag_scale = sag_scale, | |
SAG_influence_step = SAG_influence_step, | |
noise = noise, | |
unconditional_conditioning=unconditional_conditioning, | |
dynamic_threshold=dynamic_threshold, | |
ucg_schedule=ucg_schedule | |
) | |
return samples, intermediates | |
def add_noise(self, | |
original_samples: torch.FloatTensor, | |
noise: torch.FloatTensor, | |
timesteps: torch.IntTensor, | |
) -> torch.FloatTensor: | |
betas = torch.linspace(0.00085, 0.0120, 1000, dtype=torch.float32) | |
alphas = 1.0 - betas | |
alphas_cumprod = torch.cumprod(alphas, dim=0) | |
alphas_cumprod = alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype) | |
timesteps = timesteps.to(original_samples.device) | |
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 | |
sqrt_alpha_prod = sqrt_alpha_prod.flatten() | |
while len(sqrt_alpha_prod.shape) < len(original_samples.shape): | |
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) | |
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 | |
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() | |
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): | |
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) | |
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise | |
return noisy_samples | |
# def add_noise( | |
# self, | |
# original_samples: torch.FloatTensor, | |
# noise: torch.FloatTensor, | |
# timesteps: torch.FloatTensor, | |
# sigma_t, | |
# ) -> torch.FloatTensor: | |
# # Make sure sigmas and timesteps have the same device and dtype as original_samples | |
# sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) | |
# if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): | |
# # mps does not support float64 | |
# schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) | |
# timesteps = timesteps.to(original_samples.device, dtype=torch.float32) | |
# else: | |
# schedule_timesteps = self.timesteps.to(original_samples.device) | |
# timesteps = timesteps.to(original_samples.device) | |
# step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] | |
# sigma = sigmas[step_indices].flatten() | |
# while len(sigma.shape) < len(original_samples.shape): | |
# sigma = sigma.unsqueeze(-1) | |
# # print(sigma_t) | |
# noisy_samples = original_samples + noise * sigma_t | |
# return noisy_samples | |
def sag_masking(self, original_latents,model_output,x, attn_map, map_size, t, eps): | |
# Same masking process as in SAG paper: https://arxiv.org/pdf/2210.00939.pdf | |
bh, hw1, hw2 = attn_map.shape | |
b, latent_channel, latent_h, latent_w = original_latents.shape | |
h = 4 #self.unet.config.attention_head_dim | |
if isinstance(h, list): | |
h = h[-1] | |
# print(attn_map.shape) | |
# print(original_latents.shape) | |
# print(map_size) | |
# Produce attention mask | |
attn_map = attn_map.reshape(b, h, hw1, hw2) | |
attn_mask = attn_map.mean(1, keepdim=False).sum(1, keepdim=False) > 1.0 | |
# print(attn_mask.shape) | |
attn_mask = ( | |
attn_mask.reshape(b, map_size[0], map_size[1]) | |
.unsqueeze(1) | |
.repeat(1, latent_channel, 1, 1) | |
.type(attn_map.dtype) | |
) | |
attn_mask = F.interpolate(attn_mask, (latent_h, latent_w)) | |
# print(attn_mask.shape) | |
# cv2.imwrite("attn_mask.png",attn_mask) | |
# Blur according to the self-attention mask | |
degraded_latents = gaussian_blur_2d(original_latents, kernel_size=9, sigma=1.0) | |
# degraded_latents = self.add_noise(degraded_latents, noise=eps, timesteps=t)#,sigma_t=sigma_t) | |
degraded_latents = degraded_latents * attn_mask + original_latents * (1 - attn_mask) #x#original_latents | |
# degraded_latents = self.model.get_x_t_from_start_and_t(degraded_latents,t,model_output) | |
# print(original_latents.shape) | |
# print(eps.shape) | |
# Noise it again to match the noise level | |
# print("t",t) | |
# degraded_latents = self.add_noise(degraded_latents, noise=eps, timesteps=t)#,sigma_t=sigma_t) | |
return degraded_latents | |
def pred_epsilon(self, sample, model_output, timestep): | |
alpha_prod_t = timestep | |
beta_prod_t = 1 - alpha_prod_t | |
# print(self.model.parameterization)#eps | |
if self.model.parameterization == "eps": | |
pred_eps = model_output | |
elif self.model.parameterization == "sample": | |
pred_eps = (sample - (alpha_prod_t**0.5) * model_output) / (beta_prod_t**0.5) | |
elif self.model.parameterization == "v": | |
pred_eps = (beta_prod_t**0.5) * sample + (alpha_prod_t**0.5) * model_output | |
else: | |
raise ValueError( | |
f"prediction_type given as {self.scheduler.config.prediction_type} must be one of `eps`, `sample`," | |
" or `v`" | |
) | |
return pred_eps | |
def ddim_sampling(self, cond, shape, | |
x_T=None, ddim_use_original_steps=False, | |
callback=None, timesteps=None, quantize_denoised=False, | |
mask=None,masked_image_latents=None, x0=None, img_callback=None, log_every_t=100, | |
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, | |
unconditional_guidance_scale=1.,sag_scale = 0.75, SAG_influence_step=600, sag_enable = True, noise = None, unconditional_conditioning=None, dynamic_threshold=None, | |
ucg_schedule=None): | |
device = self.model.betas.device | |
b = shape[0] | |
if x_T is None: | |
img = torch.randn(shape, device=device) | |
else: | |
img = x_T | |
# timesteps =100 | |
if timesteps is None: | |
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps | |
elif timesteps is not None and not ddim_use_original_steps: | |
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1 | |
timesteps = self.ddim_timesteps[:subset_end] | |
# timesteps=timesteps[:-3] | |
# print("timesteps",timesteps) | |
intermediates = {'x_inter': [img], 'pred_x0': [img]} | |
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps) | |
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0] | |
print(f"Running DDIM Sampling with {total_steps} timesteps") | |
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps) | |
for i, step in enumerate(iterator): | |
print(step) | |
if step > SAG_influence_step: | |
sag_enable_t=True | |
else: | |
sag_enable_t=False | |
index = total_steps - i - 1 | |
ts = torch.full((b,), step, device=device, dtype=torch.long) | |
# if mask is not None: | |
# assert x0 is not None | |
# img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass? | |
# img = img_orig * mask + (1. - mask) * img | |
if ucg_schedule is not None: | |
assert len(ucg_schedule) == len(time_range) | |
unconditional_guidance_scale = ucg_schedule[i] | |
outs = self.p_sample_ddim(img,mask,masked_image_latents, cond, ts, index=index, use_original_steps=ddim_use_original_steps, | |
quantize_denoised=quantize_denoised, temperature=temperature, | |
noise_dropout=noise_dropout, score_corrector=score_corrector, | |
corrector_kwargs=corrector_kwargs, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
sag_scale = sag_scale, | |
sag_enable=sag_enable_t, | |
noise =noise, | |
unconditional_conditioning=unconditional_conditioning, | |
dynamic_threshold=dynamic_threshold) | |
img, pred_x0 = outs | |
if callback: callback(i) | |
if img_callback: img_callback(pred_x0, i) | |
if index % log_every_t == 0 or index == total_steps - 1: | |
intermediates['x_inter'].append(img) | |
intermediates['pred_x0'].append(pred_x0) | |
return img, intermediates | |
def p_sample_ddim(self, x,mask,masked_image_latents, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, | |
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, | |
unconditional_guidance_scale=1.,sag_scale = 0.75, sag_enable=True, noise=None, unconditional_conditioning=None, | |
dynamic_threshold=None): | |
b, *_, device = *x.shape, x.device | |
# map_size = None | |
# def get_map_size(module, input, output): | |
# nonlocal map_size | |
# map_size = output.shape[-2:] | |
# store_processor = CrossAttnStoreProcessor() | |
# for name, param in self.model.model.diffusion_model.named_parameters(): | |
# print(name) | |
# self.model.control_model.middle_block[1].transformer_blocks[0].attn1.processor = store_processor | |
# print(self.model.model.diffusion_model.middle_block[1].transformer_blocks[0].attn1) | |
# self.model.model.diffusion_model.middle_block[1].transformer_blocks[0].attn1 = store_processor | |
# with self.model.model.diffusion_model.middle_block[1].register_forward_hook(get_map_size): | |
if unconditional_conditioning is None or unconditional_guidance_scale == 1.: | |
model_output = self.model.apply_model(x,mask,masked_image_latents, t, c) | |
else: | |
model_t = self.model.apply_model(x,mask,masked_image_latents, t, c) | |
model_uncond = self.model.apply_model(x,mask,masked_image_latents, t, unconditional_conditioning) | |
model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond) | |
if self.model.parameterization == "v": | |
e_t = self.model.predict_eps_from_z_and_v(x, t, model_output) | |
else: | |
e_t = model_output | |
if score_corrector is not None: | |
assert self.model.parameterization == "eps", 'not implemented' | |
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs) | |
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas | |
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev | |
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas | |
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas | |
# select parameters corresponding to the currently considered timestep | |
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device) | |
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device) | |
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device) | |
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device) | |
# current prediction for x_0 | |
if self.model.parameterization != "v": | |
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() | |
else: | |
pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output) | |
if quantize_denoised: | |
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) | |
if dynamic_threshold is not None: | |
raise NotImplementedError() | |
if sag_enable == True: | |
uncond_attn, cond_attn = self.model.model.diffusion_model.middle_block[1].transformer_blocks[0].attn1.attention_probs.chunk(2) | |
# self-attention-based degrading of latents | |
map_size = self.model.model.diffusion_model.middle_block[1].map_size | |
degraded_latents = self.sag_masking( | |
pred_x0,model_output,x,uncond_attn, map_size, t, eps = noise, #self.pred_epsilon(x, model_uncond, self.model.alphas_cumprod[t]),#noise | |
) | |
if unconditional_conditioning is None or unconditional_guidance_scale == 1.: | |
degraded_model_output = self.model.apply_model(degraded_latents,mask,masked_image_latents, t, c) | |
else: | |
degraded_model_t = self.model.apply_model(degraded_latents,mask,masked_image_latents, t, c) | |
degraded_model_uncond = self.model.apply_model(degraded_latents,mask,masked_image_latents, t, unconditional_conditioning) | |
degraded_model_output = degraded_model_uncond + unconditional_guidance_scale * (degraded_model_t - degraded_model_uncond) | |
# print("sag_scale",sag_scale) | |
model_output += sag_scale * (model_output - degraded_model_output) | |
# model_output = (1-sag_scale) * model_output + sag_scale * degraded_model_output | |
# current prediction for x_0 | |
if self.model.parameterization != "v": | |
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() | |
else: | |
pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output) | |
if quantize_denoised: | |
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) | |
if dynamic_threshold is not None: | |
raise NotImplementedError() | |
# direction pointing to x_t | |
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t | |
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature | |
if noise_dropout > 0.: | |
noise = torch.nn.functional.dropout(noise, p=noise_dropout) | |
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise | |
return x_prev, pred_x0 | |
def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None, | |
unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None): | |
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps | |
num_reference_steps = timesteps.shape[0] | |
assert t_enc <= num_reference_steps | |
num_steps = t_enc | |
if use_original_steps: | |
alphas_next = self.alphas_cumprod[:num_steps] | |
alphas = self.alphas_cumprod_prev[:num_steps] | |
else: | |
alphas_next = self.ddim_alphas[:num_steps] | |
alphas = torch.tensor(self.ddim_alphas_prev[:num_steps]) | |
x_next = x0 | |
intermediates = [] | |
inter_steps = [] | |
for i in tqdm(range(num_steps), desc='Encoding Image'): | |
t = torch.full((x0.shape[0],), timesteps[i], device=self.model.device, dtype=torch.long) | |
if unconditional_guidance_scale == 1.: | |
noise_pred = self.model.apply_model(x_next, t, c) | |
else: | |
assert unconditional_conditioning is not None | |
e_t_uncond, noise_pred = torch.chunk( | |
self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)), | |
torch.cat((unconditional_conditioning, c))), 2) | |
noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond) | |
xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next | |
weighted_noise_pred = alphas_next[i].sqrt() * ( | |
(1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred | |
x_next = xt_weighted + weighted_noise_pred | |
if return_intermediates and i % ( | |
num_steps // return_intermediates) == 0 and i < num_steps - 1: | |
intermediates.append(x_next) | |
inter_steps.append(i) | |
elif return_intermediates and i >= num_steps - 2: | |
intermediates.append(x_next) | |
inter_steps.append(i) | |
if callback: callback(i) | |
out = {'x_encoded': x_next, 'intermediate_steps': inter_steps} | |
if return_intermediates: | |
out.update({'intermediates': intermediates}) | |
return x_next, out | |
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None): | |
# fast, but does not allow for exact reconstruction | |
# t serves as an index to gather the correct alphas | |
if use_original_steps: | |
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod | |
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod | |
else: | |
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas) | |
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas | |
if noise is None: | |
noise = torch.randn_like(x0) | |
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 + | |
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise) | |
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None, | |
use_original_steps=False, callback=None): | |
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps | |
timesteps = timesteps[:t_start] | |
time_range = np.flip(timesteps) | |
total_steps = timesteps.shape[0] | |
print(f"Running DDIM Sampling with {total_steps} timesteps") | |
iterator = tqdm(time_range, desc='Decoding image', total=total_steps) | |
x_dec = x_latent | |
for i, step in enumerate(iterator): | |
index = total_steps - i - 1 | |
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long) | |
x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_conditioning=unconditional_conditioning) | |
if callback: callback(i) | |
return x_dec | |