UPstud's picture
Upload 67 files
e05b8ed verified
import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel, AutoProcessor, CLIPVisionModel, CLIPImageProcessor
import open_clip
from ldm.util import default, count_params
import kornia
# import clip
from einops import rearrange
class AbstractEncoder(nn.Module):
def __init__(self):
super().__init__()
def encode(self, *args, **kwargs):
raise NotImplementedError
class IdentityEncoder(AbstractEncoder):
def encode(self, x):
return x
class ClassEmbedder(nn.Module):
def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1):
super().__init__()
self.key = key
self.embedding = nn.Embedding(n_classes, embed_dim)
self.n_classes = n_classes
self.ucg_rate = ucg_rate
def forward(self, batch, key=None, disable_dropout=False):
if key is None:
key = self.key
# this is for use in crossattn
c = batch[key][:, None]
if self.ucg_rate > 0. and not disable_dropout:
mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate)
c = mask * c + (1-mask) * torch.ones_like(c)*(self.n_classes-1)
c = c.long()
c = self.embedding(c)
return c
def get_unconditional_conditioning(self, bs, device="cuda"):
uc_class = self.n_classes - 1 # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
uc = torch.ones((bs,), device=device) * uc_class
uc = {self.key: uc}
return uc
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
class FrozenT5Embedder(AbstractEncoder):
"""Uses the T5 transformer encoder for text"""
def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
super().__init__()
self.tokenizer = T5Tokenizer.from_pretrained(version)
self.transformer = T5EncoderModel.from_pretrained(version)
self.device = device
self.max_length = max_length # TODO: typical value?
if freeze:
self.freeze()
def freeze(self):
self.transformer = self.transformer.eval()
#self.train = disabled_train
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
tokens = batch_encoding["input_ids"].to(self.device)
outputs = self.transformer(input_ids=tokens)
z = outputs.last_hidden_state
return z
def encode(self, text):
return self(text)
class FrozenCLIPEmbedder(AbstractEncoder):
"""Uses the CLIP transformer encoder for text (from huggingface)"""
LAYERS = [
"last",
"pooled",
"hidden"
]
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77,
freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32
super().__init__()
assert layer in self.LAYERS
self.tokenizer = CLIPTokenizer.from_pretrained(version)
self.transformer = CLIPTextModel.from_pretrained(version)
self.device = device
self.max_length = max_length
if freeze:
self.freeze()
self.layer = layer
self.layer_idx = layer_idx
if layer == "hidden":
assert layer_idx is not None
assert 0 <= abs(layer_idx) <= 12
def freeze(self):
self.transformer = self.transformer.eval()
#self.train = disabled_train
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
tokens = batch_encoding["input_ids"].to(self.device)
outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")
if self.layer == "last":
z = outputs.last_hidden_state
elif self.layer == "pooled":
z = outputs.pooler_output[:, None, :]
else:
z = outputs.hidden_states[self.layer_idx]
# print(z.shape)
return z
def encode(self, text):
return self(text)
# class FrozenCLIPDualEmbedder(AbstractEncoder):
# """Uses the CLIP transformer encoder for text (from huggingface)"""
# LAYERS = [
# "last",
# "pooled",
# "hidden"
# ]
# def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77,
# freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32
# super().__init__()
# assert layer in self.LAYERS
# self.tokenizer = CLIPTokenizer.from_pretrained(version)
# self.transformer = CLIPTextModel.from_pretrained(version)
# # self.processor = CLIPImageProcessor.from_pretrained(version)
# # self.imagetransformer = CLIPVisionModel.from_pretrained(version)
# self.ImageEmbedder=FrozenClipImageEmbedder()
# self.device = device
# self.max_length = max_length
# if freeze:
# self.freeze()
# self.layer = layer
# self.layer_idx = layer_idx
# if layer == "hidden":
# assert layer_idx is not None
# assert 0 <= abs(layer_idx) <= 12
# def freeze(self):
# self.transformer = self.transformer.eval()
# #self.train = disabled_train
# for name,param in self.named_parameters():
# if not "imagetransformer" in name and not "imageconv" in name and not "ImageEmbedder" in name:
# # print(name,param)
# param.requires_grad = False
# else:
# param.requires_grad = True
# # print(name)
# def forward(self, text):
# # print("text:",len(text))
# # if len(text)==1:
# # txt=text[0]
# # hint_image=None
# # elif len(text)==2:
# # txt,hint_image=text
# txt,hint_image=text
# # print(hint_image.shape)
# batch_encoding = self.tokenizer(txt, truncation=True, max_length=self.max_length, return_length=True,
# return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
# tokens = batch_encoding["input_ids"].to(self.device)
# outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")
# # input_image_batch_encoding = self.processor(input_image,return_tensors="pt")
# # ii_tokens = input_image_batch_encoding["input_ids"].to(self.device)
# # ii_outputs = self.imagetransformer(input_ids=ii_tokens, output_hidden_states=self.layer=="hidden")
# # hint_image_batch_encoding = self.processor(hint_image,return_tensors="pt")
# # hi_tokens = hint_image_batch_encoding["input_ids"].to(self.device)
# # hi_outputs = self.imagetransformer(input_ids=hi_tokens, output_hidden_states=self.layer=="hidden")
# # hint_outputs = hi_outputs-ii_outputs
# # if hint_image==None:
# # if self.layer == "last":
# # z = outputs.last_hidden_state
# # elif self.layer == "pooled":
# # z = outputs.pooler_output[:, None, :]
# # else:
# # z = outputs.hidden_states[self.layer_idx]
# # # print("z",z.shape)
# # return z
# hint_outputs=self.ImageEmbedder(hint_image)
# # print("hint_outputs",hint_outputs.shape)
# # print("prompt",outputs.last_hidden_state.shape)
# if self.layer == "last":
# z = torch.cat((outputs.last_hidden_state,hint_outputs.unsqueeze(0)),1)#torch.cat((outputs.last_hidden_state,hint_outputs.last_hidden_state),1)#torch.cat((outputs.last_hidden_state,hint_outputs.unsqueeze(0)),1)
# elif self.layer == "pooled":
# z = torch.cat((outputs.pooler_output[:, None, :],hint_outputs.unsqueeze(0)),1)
# else:
# z = torch.cat((outputs.hidden_states[self.layer_idx],hint_outputs.unsqueeze(0)),1)
# # print("z",z.shape)
# return z
# def encode(self, text):
# # print(text.shape)
# return self(text)
class FrozenCLIPDualEmbedder(AbstractEncoder):
"""Uses the CLIP transformer encoder for text (from huggingface)"""
LAYERS = [
"last",
"pooled",
"hidden"
]
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77,
freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32
super().__init__()
assert layer in self.LAYERS
self.tokenizer = CLIPTokenizer.from_pretrained(version)
self.transformer = CLIPTextModel.from_pretrained(version)
# self.processor = CLIPImageProcessor.from_pretrained(version)
# self.imagetransformer = CLIPVisionModel.from_pretrained(version)
self.ImageEmbedder=FrozenClipImageEmbedder()
self.device = device
self.max_length = max_length
if freeze:
self.freeze()
self.layer = layer
self.layer_idx = layer_idx
if layer == "hidden":
assert layer_idx is not None
assert 0 <= abs(layer_idx) <= 12
print("pooled")
def freeze(self):
# self.transformer = self.transformer.eval()
#self.train = disabled_train
for name,param in self.named_parameters():
# print(name)
# if not "imagetransformer" in name and not "imageconv" in name and not "ImageEmbedder" in name:
param.requires_grad = False
# if not "ImageEmbedder" in name:
# # print(name,param)
# param.requires_grad = False
# else:
# param.requires_grad = True
def forward(self, text):
# pdb.set_trace()
# print("text:",len(text))
# if len(text)==1:
# txt=text[0]
# hint_image=None
# elif len(text)==2:
# txt,hint_image=text
txt,hint_image=text
# if hint_image==None:
# batch_encoding = self.tokenizer(txt, truncation=True, max_length=self.max_length, return_length=True,
# return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
# tokens = batch_encoding["input_ids"].to(self.device)
# outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")
# prompt_outputs=outputs.last_hidden_state
# return prompt_outputs
# else:
# hint_image.requires_grad_(True)
# print(hint_image.shape)
batch_encoding = self.tokenizer(txt, truncation=True, max_length=self.max_length, return_length=True,
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
tokens = batch_encoding["input_ids"].to(self.device)
outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")
prompt_outputs=outputs.last_hidden_state
# prompt_outputs=outputs.last_hidden_state.detach().requires_grad_(True)
# prompt_outputs.retain_grad()
# input_image_batch_encoding = self.processor(input_image,return_tensors="pt")
# ii_tokens = input_image_batch_encoding["input_ids"].to(self.device)
# ii_outputs = self.imagetransformer(input_ids=ii_tokens, output_hidden_states=self.layer=="hidden")
# hint_image_batch_encoding = self.processor(hint_image,return_tensors="pt")
# hi_tokens = hint_image_batch_encoding["input_ids"].to(self.device)
# hi_outputs = self.imagetransformer(input_ids=hi_tokens, output_hidden_states=self.layer=="hidden")
# hint_outputs = hi_outputs-ii_outputs
# if hint_image==None:
# if self.layer == "last":
# z = outputs.last_hidden_state
# elif self.layer == "pooled":
# z = outputs.pooler_output[:, None, :]
# else:
# z = outputs.hidden_states[self.layer_idx]
# # print("z",z.shape)
# return z
# pdb.set_trace()
outputs = self.ImageEmbedder(hint_image)
# image_embeds = outputs.pooler_output #outputs.image_embeds
image_embeds = outputs.pooler_output
# print(image_embeds.shape)
# last_hidden_state = outputs.last_hidden_state
# pooled_output = outputs.pooler_output
# print("hint_outputs",last_hidden_state.shape)
# print("pooled_output", pooled_output.shape)
# print("prompt",prompt_outputs.shape)
if self.layer == "last":
# print(prompt_outputs.shape)
# print(image_embeds.shape)
z = torch.cat((prompt_outputs,image_embeds.unsqueeze(1)),1)#,hint_outputs.unsqueeze(0)),1)
# z = torch.cat((prompt_outputs,hint_outputs.last_hidden_state),1)#,hint_outputs.unsqueeze(0)),1)
elif self.layer == "pooled":
z = torch.cat((outputs.pooler_output[:, None, :],hint_outputs.unsqueeze(0)),1)
else:
z = torch.cat((outputs.hidden_states[self.layer_idx],hint_outputs.unsqueeze(0)),1)
return z
# def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77,
# freeze=True, layer="last", layer_idx=None): # clip-vit-base-patch32
# super().__init__()
# assert layer in self.LAYERS
# # self.processor = CLIPImageProcessor.from_pretrained(version)
# # self.imagetransformer = CLIPVisionModel.from_pretrained(version)
# self.ImageEmbedder=FrozenClipImageEmbedder()
# self.device = device
# self.max_length = max_length
# if freeze:
# self.freeze()
# self.layer = layer
# self.layer_idx = layer_idx
# if layer == "hidden":
# assert layer_idx is not None
# assert 0 <= abs(layer_idx) <= 12
# def freeze(self):
# #self.train = disabled_train
# for name,param in self.named_parameters():
# if not "imagetransformer" in name and not "imageconv" in name and not "ImageEmbedder" in name:
# # print(name,param)
# param.requires_grad = False
# else:
# param.requires_grad = True
# # print(name)
# def forward(self, txt,hint_image):
# # pdb.set_trace()
# hint_outputs=self.ImageEmbedder(hint_image)
# # print("hint_outputs",hint_outputs.shape)
# # print("prompt",outputs.last_hidden_state.shape)
# if self.layer == "last":
# print(txt.shape)
# print(hint_outputs.last_hidden_state.shape)
# z = torch.cat((txt,hint_outputs.last_hidden_state),1)#,hint_outputs.unsqueeze(0)),1)
# elif self.layer == "pooled":
# z = torch.cat((txt,hint_outputs.unsqueeze(0)),1)
# else:
# z = torch.cat((txt,hint_outputs.unsqueeze(0)),1)
# # print("z",z.shape)
# return z
def encode(self, text):
# if isinstance(text, dict):
# txt,hint_image=text['c_crossattn'][0]
# txt=txt
# else:
# txt,hint_image=text
# txt = text
txt, x = text
# if x==None:
# return self((txt,x))
# print(x.shape)
if len(x.shape) == 3:
x = x[..., None]
x = rearrange(x, 'b h w c -> b c h w')
x = x.to(memory_format=torch.contiguous_format).float()
x = [x[i] for i in range(x.shape[0])]
return self((txt, x))
class FrozenOpenCLIPEmbedder(AbstractEncoder):
"""
Uses the OpenCLIP transformer encoder for text
"""
LAYERS = [
#"pooled",
"last",
"penultimate"
]
def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
freeze=True, layer="last"):
super().__init__()
assert layer in self.LAYERS
model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version)
del model.visual
self.model = model
self.device = device
self.max_length = max_length
if freeze:
self.freeze()
self.layer = layer
if self.layer == "last":
self.layer_idx = 0
elif self.layer == "penultimate":
self.layer_idx = 1
else:
raise NotImplementedError()
def freeze(self):
self.model = self.model.eval()
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
tokens = open_clip.tokenize(text)
z = self.encode_with_transformer(tokens.to(self.device))
return z
def encode_with_transformer(self, text):
x = self.model.token_embedding(text) # [batch_size, n_ctx, d_model]
x = x + self.model.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.model.ln_final(x)
return x
def text_transformer_forward(self, x: torch.Tensor, attn_mask = None):
for i, r in enumerate(self.model.transformer.resblocks):
if i == len(self.model.transformer.resblocks) - self.layer_idx:
break
if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint(r, x, attn_mask)
else:
x = r(x, attn_mask=attn_mask)
return x
def encode(self, text):
return self(text)
class FrozenCLIPT5Encoder(AbstractEncoder):
def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda",
clip_max_length=77, t5_max_length=77):
super().__init__()
self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length)
self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, "
f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params.")
def encode(self, text):
return self(text)
def forward(self, text):
clip_z = self.clip_encoder.encode(text)
t5_z = self.t5_encoder.encode(text)
return [clip_z, t5_z]
class FrozenClipImageEmbedder(nn.Module):
"""
Uses the CLIP image encoder.
"""
def __init__(
self,
model='ViT-B/16', #ViT-L/14
jit=False,
device='cuda' if torch.cuda.is_available() else 'cpu',
antialias=False,
):
super().__init__()
# self.model, _ = clip.load(name=model, device=device, jit=jit)
# self.model.requires_grad_(True)
self.imageconv = nn.Conv2d(4,3,(3,3),padding=1)#.cuda()
self.antialias = antialias
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
self.device = device
self.processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
self.model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
# self.imagetransformer = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch16")
# def preprocess(self, x):
# # normalize to [0,1]
# # print(x.shape)
# # pdb.set_trace()
# x = kornia.geometry.resize(x, (224, 224),
# interpolation='bicubic',align_corners=True,
# antialias=self.antialias)
# # print("after",x.shape)
# # x = (x + 1.) / 2.
# print(x)
# # renormalize according to clip
# x = kornia.enhance.normalize(x, self.mean, self.std)
# # print("after1111111",x.shape)
# return x
def forward(self, x):
# x is assumed to be in range [-1,1]
# pdb.set_trace()
# with torch.set_grad_enabled(True):
# print("before",x.shape)
# x=self.imageconv(x)
# print("after",x.shape)
# x = x.tolist()
x = self.processor(x, return_tensors="pt")
# print(x)
# pdb.set_trace()
x['pixel_values'] = x['pixel_values'].to(self.device)
outputs = self.model(**x)
return outputs
# class FrozenClipImageEmbedder(nn.Module):
# """
# Uses the CLIP image encoder.
# """
# def __init__(
# self,
# model='ViT-B/16',
# jit=False,
# device='cuda' if torch.cuda.is_available() else 'cpu',
# antialias=False,
# ):
# super().__init__()
# self.model, _ = clip.load(name=model, device=device, jit=jit)
# # self.imageconv = nn.Conv2d(4,3,(3,3),stride=2)
# self.antialias = antialias
# self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
# self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
# def preprocess(self, x):
# # normalize to [0,1]
# # print(x.shape)
# x = kornia.geometry.resize(x, (224, 224),
# interpolation='bicubic',align_corners=True,
# antialias=self.antialias)
# # print("after",x.shape)
# x = (x + 1.) / 2.
# # renormalize according to clip
# x = kornia.enhance.normalize(x, self.mean, self.std)
# # print("after1111111",x.shape)
# return x
# def forward(self, x):
# # x is assumed to be in range [-1,1]
# # x=self.imageconv(x)
# return self.model.encode_image(self.preprocess(x))
# class FrozenClipImageEmbedder(nn.Module):
# """
# Uses the CLIP image encoder.
# """
# def __init__(
# self,
# model='ViT-B/16', #ViT-L/14
# jit=False,
# device='cuda' if torch.cuda.is_available() else 'cpu',
# antialias=False,
# ):
# super().__init__()
# self.model, _ = clip.load(name=model, device=device, jit=jit)
# # self.model.requires_grad_(True)
# # self.imageconv = nn.Conv2d(4,3,(3,3),padding=1)#.cuda()#padding=1 #stride=2
# self.antialias = antialias
# self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
# self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
# # self.processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14")
# self.imagetransformer = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch16")
# def preprocess(self, x):
# # normalize to [0,1]
# # print(x.shape)
# # pdb.set_trace()
# x = kornia.geometry.resize(x, (224, 224),
# interpolation='bicubic',align_corners=True,
# antialias=self.antialias)
# # print("after",x.shape)
# x = (x + 1.) / 2.
# # renormalize according to clip
# x = kornia.enhance.normalize(x, self.mean, self.std)
# # print("after1111111",x.shape)
# return x
# def forward(self, x):
# # x is assumed to be in range [-1,1]
# # x=self.imageconv(x)
# return self.imagetransformer(self.preprocess(x), output_hidden_states="last"=="hidden") #self.model.encode_image(self.preprocess(x))