Ubai commited on
Commit
9b4b80d
·
verified ·
1 Parent(s): b0781d5

Upload LangChain_QA_Panel_App.ipynb

Browse files
Files changed (1) hide show
  1. LangChain_QA_Panel_App.ipynb +257 -0
LangChain_QA_Panel_App.ipynb ADDED
@@ -0,0 +1,257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "id": "04815d1b-44ee-4bd3-878e-fa0c3bf9fa7f",
6
+ "metadata": {
7
+ "tags": []
8
+ },
9
+ "source": [
10
+ "# LangChain QA Panel App"
11
+ ]
12
+ },
13
+ {
14
+ "cell_type": "code",
15
+ "execution_count": null,
16
+ "id": "a181568b-9cde-4a55-a853-4d2a41dbfdad",
17
+ "metadata": {
18
+ "tags": []
19
+ },
20
+ "outputs": [],
21
+ "source": [
22
+ "#!pip install langchain openai chromadb tiktoken pypdf panel"
23
+ ]
24
+ },
25
+ {
26
+ "cell_type": "code",
27
+ "execution_count": null,
28
+ "id": "9a464409-d064-4766-a9cb-5119f6c4b8f5",
29
+ "metadata": {
30
+ "tags": []
31
+ },
32
+ "outputs": [],
33
+ "source": [
34
+ "import os \n",
35
+ "from langchain.chains import RetrievalQA\n",
36
+ "from langchain.llms import OpenAI\n",
37
+ "from langchain.document_loaders import TextLoader\n",
38
+ "from langchain.document_loaders import PyPDFLoader\n",
39
+ "from langchain.indexes import VectorstoreIndexCreator\n",
40
+ "from langchain.text_splitter import CharacterTextSplitter\n",
41
+ "from langchain.embeddings import OpenAIEmbeddings\n",
42
+ "from langchain.vectorstores import Chroma\n",
43
+ "from langchain.embeddings import HuggingFaceEmbeddings\n",
44
+ "from langchain.embeddings import HuggingFaceHub\n",
45
+ "import panel as pn\n",
46
+ "import tempfile\n"
47
+ ]
48
+ },
49
+ {
50
+ "cell_type": "code",
51
+ "execution_count": null,
52
+ "id": "b2d07ea5-9ff2-4c96-a8dc-92895d870b73",
53
+ "metadata": {
54
+ "tags": []
55
+ },
56
+ "outputs": [],
57
+ "source": [
58
+ "pn.extension('texteditor', template=\"bootstrap\", sizing_mode='stretch_width')\n",
59
+ "pn.state.template.param.update(\n",
60
+ " main_max_width=\"690px\",\n",
61
+ " header_background=\"#F08080\",\n",
62
+ ")"
63
+ ]
64
+ },
65
+ {
66
+ "cell_type": "code",
67
+ "execution_count": null,
68
+ "id": "763db4d0-3436-41d3-8b0f-e66ce16468cd",
69
+ "metadata": {
70
+ "tags": []
71
+ },
72
+ "outputs": [],
73
+ "source": [
74
+ "file_input = pn.widgets.FileInput(width=300)\n",
75
+ "\n",
76
+ "openaikey = pn.widgets.PasswordInput(\n",
77
+ " value=\"\", placeholder=\"Enter your OpenAI API Key here...\", width=300\n",
78
+ ")\n",
79
+ "prompt = pn.widgets.TextEditor(\n",
80
+ " value=\"\", placeholder=\"Enter your questions here...\", height=160, toolbar=False\n",
81
+ ")\n",
82
+ "run_button = pn.widgets.Button(name=\"Run!\")\n",
83
+ "\n",
84
+ "select_k = pn.widgets.IntSlider(\n",
85
+ " name=\"Number of relevant chunks\", start=1, end=5, step=1, value=2\n",
86
+ ")\n",
87
+ "select_chain_type = pn.widgets.RadioButtonGroup(\n",
88
+ " name='Chain type', \n",
89
+ " options=['stuff', 'map_reduce', \"refine\", \"map_rerank\"],\n",
90
+ " value='map_reduce'\n",
91
+ ")\n",
92
+ "\n",
93
+ "widgets = pn.Row(\n",
94
+ " pn.Column(prompt, run_button, margin=5),\n",
95
+ " pn.Card(\n",
96
+ " \"Chain type:\",\n",
97
+ " pn.Column(select_chain_type, select_k),\n",
98
+ " title=\"Advanced settings\"\n",
99
+ " ), width=670\n",
100
+ ")"
101
+ ]
102
+ },
103
+ {
104
+ "cell_type": "code",
105
+ "execution_count": null,
106
+ "id": "9b83cc06-3401-498f-8f84-8a98370f3121",
107
+ "metadata": {
108
+ "tags": []
109
+ },
110
+ "outputs": [],
111
+ "source": [
112
+ "def qa(file, query, chain_type, k):\n",
113
+ " # load document\n",
114
+ " loader = PyPDFLoader(file)\n",
115
+ " documents = loader.load()\n",
116
+ " # split the documents into chunks\n",
117
+ " text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
118
+ " texts = text_splitter.split_documents(documents)\n",
119
+ " # select which embeddings we want to use\n",
120
+ " #embeddings = OpenAIEmbeddings()\n",
121
+ " embeddings = HuggingFaceEmbeddings()\n",
122
+ " # create the vectorestore to use as the index\n",
123
+ " db = Chroma.from_documents(texts, embeddings)\n",
124
+ " # expose this index in a retriever interface\n",
125
+ " retriever = db.as_retriever(search_type=\"similarity\", search_kwargs={\"k\": k})\n",
126
+ " # create a chain to answer questions \n",
127
+ " qa = RetrievalQA.from_chain_type(\n",
128
+ " llm = HuggingFaceHub(), chain_type=chain_type, retriever=retriever, return_source_documents=True)\n",
129
+ " result = qa({\"query\": query})\n",
130
+ " print(result['result'])\n",
131
+ " return result"
132
+ ]
133
+ },
134
+ {
135
+ "cell_type": "code",
136
+ "execution_count": null,
137
+ "id": "2722f43b-daf6-4d17-a842-41203ae9b140",
138
+ "metadata": {
139
+ "tags": []
140
+ },
141
+ "outputs": [],
142
+ "source": [
143
+ "# os.environ[\"OPENAI_API_KEY\"] = \"\"\n",
144
+ "# result = qa(\"materials/example.pdf\", \"When was GPT-2 created?\", \"map_reduce\", 2)"
145
+ ]
146
+ },
147
+ {
148
+ "cell_type": "code",
149
+ "execution_count": null,
150
+ "id": "60e1b3d3-c0d2-4260-ae0c-26b03f1b8824",
151
+ "metadata": {},
152
+ "outputs": [],
153
+ "source": [
154
+ "convos = [] # store all panel objects in a list\n",
155
+ "\n",
156
+ "def qa_result(_):\n",
157
+ " os.environ[\"OPENAI_API_KEY\"] = openaikey.value\n",
158
+ " \n",
159
+ " # save pdf file to a temp file \n",
160
+ " if file_input.value is not None:\n",
161
+ " file_input.save(\"/.cache/temp.pdf\")\n",
162
+ " \n",
163
+ " prompt_text = prompt.value\n",
164
+ " if prompt_text:\n",
165
+ " result = qa(file=\"/.cache/temp.pdf\", query=prompt_text, chain_type=select_chain_type.value, k=select_k.value)\n",
166
+ " convos.extend([\n",
167
+ " pn.Row(\n",
168
+ " pn.panel(\"\\U0001F60A\", width=10),\n",
169
+ " prompt_text,\n",
170
+ " width=600\n",
171
+ " ),\n",
172
+ " pn.Row(\n",
173
+ " pn.panel(\"\\U0001F916\", width=10),\n",
174
+ " pn.Column(\n",
175
+ " result[\"result\"],\n",
176
+ " \"Relevant source text:\",\n",
177
+ " pn.pane.Markdown('\\n--------------------------------------------------------------------\\n'.join(doc.page_content for doc in result[\"source_documents\"]))\n",
178
+ " )\n",
179
+ " )\n",
180
+ " ])\n",
181
+ " return pn.Column(*convos, margin=15, width=575, min_height=400)\n"
182
+ ]
183
+ },
184
+ {
185
+ "cell_type": "code",
186
+ "execution_count": null,
187
+ "id": "c3a70857-0b98-4f62-a9c0-b62ca42b474c",
188
+ "metadata": {
189
+ "tags": []
190
+ },
191
+ "outputs": [],
192
+ "source": [
193
+ "qa_interactive = pn.panel(\n",
194
+ " pn.bind(qa_result, run_button),\n",
195
+ " loading_indicator=True,\n",
196
+ ")"
197
+ ]
198
+ },
199
+ {
200
+ "cell_type": "code",
201
+ "execution_count": null,
202
+ "id": "228e2b42-b1ed-43af-b923-031a70241ab0",
203
+ "metadata": {
204
+ "tags": []
205
+ },
206
+ "outputs": [],
207
+ "source": [
208
+ "output = pn.WidgetBox('*Output will show up here:*', qa_interactive, width=670, scroll=True)"
209
+ ]
210
+ },
211
+ {
212
+ "cell_type": "code",
213
+ "execution_count": null,
214
+ "id": "1b0ec253-2bcd-4f91-96d8-d8456e900a58",
215
+ "metadata": {
216
+ "tags": []
217
+ },
218
+ "outputs": [],
219
+ "source": [
220
+ "# layout\n",
221
+ "pn.Column(\n",
222
+ " pn.pane.Markdown(\"\"\"\n",
223
+ " ## \\U0001F60A! Question Answering with your PDF file\n",
224
+ " \n",
225
+ " 1) Upload a PDF. 2) Enter OpenAI API key. This costs $. Set up billing at [OpenAI](https://platform.openai.com/account). 3) Type a question and click \"Run\"\n",
226
+ " \n",
227
+ " \"\"\"),\n",
228
+ " pn.Row(file_input,openaikey),\n",
229
+ " output,\n",
230
+ " widgets\n",
231
+ "\n",
232
+ ").servable()"
233
+ ]
234
+ }
235
+ ],
236
+ "metadata": {
237
+ "kernelspec": {
238
+ "display_name": "Python 3 (ipykernel)",
239
+ "language": "python",
240
+ "name": "python3"
241
+ },
242
+ "language_info": {
243
+ "codemirror_mode": {
244
+ "name": "ipython",
245
+ "version": 3
246
+ },
247
+ "file_extension": ".py",
248
+ "mimetype": "text/x-python",
249
+ "name": "python",
250
+ "nbconvert_exporter": "python",
251
+ "pygments_lexer": "ipython3",
252
+ "version": "3.10.11"
253
+ }
254
+ },
255
+ "nbformat": 4,
256
+ "nbformat_minor": 5
257
+ }