Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -80,3 +80,181 @@ def initialize_llmchain(vector_db, progress=gr.Progress()):
|
|
80 |
|
81 |
|
82 |
# ... (other functions remain the same)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
|
82 |
# ... (other functions remain the same)
|
83 |
+
|
84 |
+
|
85 |
+
# Initialize database
|
86 |
+
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
|
87 |
+
# Create list of documents (when valid)
|
88 |
+
list_file_path = [x.name for x in list_file_obj if x is not None]
|
89 |
+
# Create collection_name for vector database
|
90 |
+
progress(0.1, desc="Creating collection name...")
|
91 |
+
collection_name = Path(list_file_path[0]).stem
|
92 |
+
# Fix potential issues from naming convention
|
93 |
+
## Remove space
|
94 |
+
collection_name = collection_name.replace(" ","-")
|
95 |
+
## Limit lenght to 50 characters
|
96 |
+
collection_name = collection_name[:50]
|
97 |
+
## Enforce start and end as alphanumeric character
|
98 |
+
if not collection_name[0].isalnum():
|
99 |
+
collection_name[0] = 'A'
|
100 |
+
if not collection_name[-1].isalnum():
|
101 |
+
collection_name[-1] = 'Z'
|
102 |
+
# print('list_file_path: ', list_file_path)
|
103 |
+
print('Collection name: ', collection_name)
|
104 |
+
progress(0.25, desc="Loading document...")
|
105 |
+
# Load document and create splits
|
106 |
+
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
107 |
+
# Create or load vector database
|
108 |
+
progress(0.5, desc="Generating vector database...")
|
109 |
+
# global vector_db
|
110 |
+
vector_db = create_db(doc_splits, collection_name)
|
111 |
+
progress(0.9, desc="Done!")
|
112 |
+
return vector_db, collection_name, "Complete!"
|
113 |
+
|
114 |
+
|
115 |
+
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
116 |
+
# print("llm_option",llm_option)
|
117 |
+
llm_name = list_llm[llm_option]
|
118 |
+
print("llm_name: ",llm_name)
|
119 |
+
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
120 |
+
return qa_chain, "Complete!"
|
121 |
+
|
122 |
+
|
123 |
+
def format_chat_history(message, chat_history):
|
124 |
+
formatted_chat_history = []
|
125 |
+
for user_message, bot_message in chat_history:
|
126 |
+
formatted_chat_history.append(f"User: {user_message}")
|
127 |
+
formatted_chat_history.append(f"Assistant: {bot_message}")
|
128 |
+
return formatted_chat_history
|
129 |
+
|
130 |
+
|
131 |
+
def conversation(qa_chain, message, history):
|
132 |
+
formatted_chat_history = format_chat_history(message, history)
|
133 |
+
#print("formatted_chat_history",formatted_chat_history)
|
134 |
+
|
135 |
+
# Generate response using QA chain
|
136 |
+
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
137 |
+
response_answer = response["answer"]
|
138 |
+
if response_answer.find("Helpful Answer:") != -1:
|
139 |
+
response_answer = response_answer.split("Helpful Answer:")[-1]
|
140 |
+
response_sources = response["source_documents"]
|
141 |
+
response_source1 = response_sources[0].page_content.strip()
|
142 |
+
response_source2 = response_sources[1].page_content.strip()
|
143 |
+
response_source3 = response_sources[2].page_content.strip()
|
144 |
+
# Langchain sources are zero-based
|
145 |
+
response_source1_page = response_sources[0].metadata["page"] + 1
|
146 |
+
response_source2_page = response_sources[1].metadata["page"] + 1
|
147 |
+
response_source3_page = response_sources[2].metadata["page"] + 1
|
148 |
+
# print ('chat response: ', response_answer)
|
149 |
+
# print('DB source', response_sources)
|
150 |
+
|
151 |
+
# Append user message and response to chat history
|
152 |
+
new_history = history + [(message, response_answer)]
|
153 |
+
# return gr.update(value=""), new_history, response_sources[0], response_sources[1]
|
154 |
+
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
155 |
+
|
156 |
+
|
157 |
+
def upload_file(file_obj):
|
158 |
+
list_file_path = []
|
159 |
+
for idx, file in enumerate(file_obj):
|
160 |
+
file_path = file_obj.name
|
161 |
+
list_file_path.append(file_path)
|
162 |
+
# print(file_path)
|
163 |
+
# initialize_database(file_path, progress)
|
164 |
+
return list_file_path
|
165 |
+
|
166 |
+
|
167 |
+
def demo():
|
168 |
+
with gr.Blocks(theme="base") as demo:
|
169 |
+
vector_db = gr.State()
|
170 |
+
qa_chain = gr.State()
|
171 |
+
collection_name = gr.State()
|
172 |
+
|
173 |
+
gr.Markdown(
|
174 |
+
"""<center><h2>PDF-based chatbot (powered by LangChain and open-source LLMs)</center></h2>
|
175 |
+
<h3>Ask any questions about your PDF documents, along with follow-ups</h3>
|
176 |
+
<b>Note:</b> This AI assistant performs retrieval-augmented generation from your PDF documents. \
|
177 |
+
When generating answers, it takes past questions into account (via conversational memory), and includes document references for clarity purposes.</i>
|
178 |
+
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate an output.<br>
|
179 |
+
""")
|
180 |
+
with gr.Tab("Step 1 - Document pre-processing"):
|
181 |
+
with gr.Row():
|
182 |
+
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
|
183 |
+
# upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
|
184 |
+
with gr.Row():
|
185 |
+
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database")
|
186 |
+
with gr.Accordion("Advanced options - Document text splitter", open=False):
|
187 |
+
with gr.Row():
|
188 |
+
slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
|
189 |
+
with gr.Row():
|
190 |
+
slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
|
191 |
+
with gr.Row():
|
192 |
+
db_progress = gr.Textbox(label="Vector database initialization", value="None")
|
193 |
+
with gr.Row():
|
194 |
+
db_btn = gr.Button("Generate vector database...")
|
195 |
+
|
196 |
+
with gr.Tab("Step 2 - QA chain initialization"):
|
197 |
+
with gr.Row():
|
198 |
+
llm_btn = gr.Radio(list_llm_simple, \
|
199 |
+
label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model")
|
200 |
+
with gr.Accordion("Advanced options - LLM model", open=False):
|
201 |
+
with gr.Row():
|
202 |
+
slider_temperature = gr.Slider(minimum = 0.0, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
|
203 |
+
with gr.Row():
|
204 |
+
slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
|
205 |
+
with gr.Row():
|
206 |
+
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
|
207 |
+
with gr.Row():
|
208 |
+
llm_progress = gr.Textbox(value="None",label="QA chain initialization")
|
209 |
+
with gr.Row():
|
210 |
+
qachain_btn = gr.Button("Initialize question-answering chain...")
|
211 |
+
|
212 |
+
with gr.Tab("Step 3 - Conversation with chatbot"):
|
213 |
+
chatbot = gr.Chatbot(height=300)
|
214 |
+
with gr.Accordion("Advanced - Document references", open=False):
|
215 |
+
with gr.Row():
|
216 |
+
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
|
217 |
+
source1_page = gr.Number(label="Page", scale=1)
|
218 |
+
with gr.Row():
|
219 |
+
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
|
220 |
+
source2_page = gr.Number(label="Page", scale=1)
|
221 |
+
with gr.Row():
|
222 |
+
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
|
223 |
+
source3_page = gr.Number(label="Page", scale=1)
|
224 |
+
with gr.Row():
|
225 |
+
msg = gr.Textbox(placeholder="Type message", container=True)
|
226 |
+
with gr.Row():
|
227 |
+
submit_btn = gr.Button("Submit")
|
228 |
+
clear_btn = gr.ClearButton([msg, chatbot])
|
229 |
+
|
230 |
+
# Preprocessing events
|
231 |
+
#upload_btn.upload(upload_file, inputs=[upload_btn], outputs=[document])
|
232 |
+
db_btn.click(initialize_database, \
|
233 |
+
inputs=[document, slider_chunk_size, slider_chunk_overlap], \
|
234 |
+
outputs=[vector_db, collection_name, db_progress])
|
235 |
+
qachain_btn.click(initialize_LLM, \
|
236 |
+
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
|
237 |
+
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
|
238 |
+
inputs=None, \
|
239 |
+
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
240 |
+
queue=False)
|
241 |
+
|
242 |
+
# Chatbot events
|
243 |
+
msg.submit(conversation, \
|
244 |
+
inputs=[qa_chain, msg, chatbot], \
|
245 |
+
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
246 |
+
queue=False)
|
247 |
+
submit_btn.click(conversation, \
|
248 |
+
inputs=[qa_chain, msg, chatbot], \
|
249 |
+
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
250 |
+
queue=False)
|
251 |
+
clear_btn.click(lambda:[None,"",0,"",0,"",0], \
|
252 |
+
inputs=None, \
|
253 |
+
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
254 |
+
queue=False)
|
255 |
+
demo.queue().launch(debug=True)
|
256 |
+
|
257 |
+
|
258 |
+
if __name__ == "__main__":
|
259 |
+
demo()
|
260 |
+
|