import gradio as gr import os from langchain.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Chroma from langchain.chains import ConversationalRetrievalChain from langchain.embeddings import HuggingFaceEmbeddings from langchain.llms import HuggingFacePipeline from langchain.chains import ConversationChain from langchain.memory import ConversationBufferMemory from langchain.llms import HuggingFaceHub from pathlib import Path import chromadb from transformers import AutoTokenizer import transformers import torch import tqdm import accelerate # Update list of LLM models list_llm = ["mistralai/Mistral-7B-Instruct-v0.2"] list_llm_simple = [os.path.basename(llm) for llm in list_llm] def load_doc(list_file_path, chunk_size, chunk_overlap): loaders = [PyPDFLoader(x) for x in list_file_path] pages = [] for loader in loaders: pages.extend(loader.load()) text_splitter = RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap) doc_splits = text_splitter.split_documents(pages) return doc_splits def create_db(splits, collection_name): embedding = HuggingFaceEmbeddings() new_client = chromadb.EphemeralClient() vectordb = Chroma.from_documents( documents=splits, embedding=embedding, client=new_client, collection_name=collection_name, ) return vectordb def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): llm = HuggingFaceHub( repo_id=llm_model, model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k} ) memory = ConversationBufferMemory( memory_key="chat_history", output_key='answer', return_messages=True ) retriever = vector_db.as_retriever() qa_chain = ConversationalRetrievalChain.from_llm( llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True, verbose=False, ) progress(0.9, desc="Done!") return qa_chain def initialize_database(list_file_obj, chunk_size, chunk_overlap, llm_temperature, max_tokens, top_k, progress=gr.Progress()): list_file_path = [x.name for x in list_file_obj if x is not None] collection_name = Path(list_file_path[0]).stem.replace(" ", "-")[:50] doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap) vector_db = create_db(doc_splits, collection_name) qa_chain = initialize_llmchain( list_llm[0], llm_temperature, max_tokens, top_k, vector_db, progress) return vector_db, collection_name, qa_chain, "Complete!" def format_chat_history(message, chat_history): formatted_chat_history = [] for user_message, bot_message in chat_history: formatted_chat_history.append(f"User: {user_message}") formatted_chat_history.append(f"Assistant: {bot_message}") return formatted_chat_history def conversation(qa_chain, message, history): formatted_chat_history = format_chat_history(message, history) response = qa_chain({"question": message, "chat_history": formatted_chat_history}) response_answer = response["answer"] if response_answer.find("Helpful Answer:") != -1: response_answer = response_answer.split("Helpful Answer:")[-1] response_sources = response["source_documents"] response_source1 = response_sources[0].page_content.strip() response_source2 = response_sources[1].page_content.strip() response_source3 = response_sources[2].page_content.strip() response_source1_page = response_sources[0].metadata["page"] + 1 response_source2_page = response_sources[1].metadata["page"] + 1 response_source3_page = response_sources[2].metadata["page"] + 1 new_history = history + [(message, response_answer)] return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page def upload_file(file_obj): list_file_path = [] for idx, file in enumerate(file_obj): file_path = file_obj.name list_file_path.append(file_path) return list_file_path def demo(): with gr.Blocks(theme="base") as demo: vector_db = gr.State() qa_chain = gr.State() collection_name = gr.State() gr.Markdown( """

PDF-based chatbot (powered by LangChain and open-source LLMs)

Ask any questions about your PDF documents, along with follow-ups

Note: This AI assistant performs retrieval-augmented generation from your PDF documents. \ When generating answers, it takes past questions into account (via conversational memory), and includes document references for clarity purposes.
Warning: This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate an output.
""") with gr.Tab("Chatbot"): with gr.Row(): document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)") db_btn = gr.Button("Generate vector database...") with gr.Accordion("Advanced options - Document text splitter", open=False): with gr.Row(): slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True) with gr.Row(): slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True) with gr.Row(): db_progress = gr.Textbox(label="Vector database initialization", value="None") with gr.Row(): llm_btn = gr.Radio(list_llm_simple, label="LLM models", value=list_llm_simple[0], type="index", info="Choose your LLM model") with gr.Accordion("Advanced options - LLM model", open=False): with gr.Row(): slider_temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True) with gr.Row(): slider_maxtokens = gr