import gradio as gr import os from langchain.document_loaders import PyPDFLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Chroma from langchain.chains import ConversationalRetrievalChain from langchain.embeddings import HuggingFaceEmbeddings from langchain.llms import HuggingFaceHub from pathlib import Path import chromadb # List of available LLM models list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", "google/gemma-7b-it", "google/gemma-2b-it", "HuggingFaceH4/zephyr-7b-beta", "meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2", "TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct", "google/flan-t5-xxl" ] list_llm_simple = [os.path.basename(llm) for llm in list_llm] # Load PDF document and create doc splits def load_doc(list_file_path, chunk_size, chunk_overlap): loaders = [PyPDFLoader(x) for x in list_file_path] pages = [] for loader in loaders: pages.extend(loader.load()) text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap) doc_splits = text_splitter.split_documents(pages) return doc_splits # Create vector database def create_db(splits, collection_name): embedding = HuggingFaceEmbeddings() new_client = chromadb.EphemeralClient() vectordb = Chroma.from_documents( documents=splits, embedding=embedding, client=new_client, collection_name=collection_name ) return vectordb # Initialize langchain LLM chain def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1": model_kwargs = {"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True} elif llm_model == "microsoft/phi-2": raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...") elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0": model_kwargs = {"temperature": temperature, "max_new_tokens": 250, "top_k": top_k} else: model_kwargs = {"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k} llm = HuggingFaceHub( repo_id=llm_model, model_kwargs=model_kwargs ) memory = ConversationBufferMemory( memory_key="chat_history", output_key='answer', return_messages=True ) retriever = vector_db.as_retriever() qa_chain = ConversationalRetrievalChain.from_llm( llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True, verbose=False ) progress(0.9, desc="Done!") return qa_chain def initialize_demo(list_file_obj, chunk_size, chunk_overlap, db_progress): list_file_path = [file.name for file in list_file_obj if file is not None] collection_name = Path(list_file_path[0]).stem.replace(" ", "-")[:50] doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap) vector_db = create_db(doc_splits, collection_name) qa_chain = initialize_llmchain( list_llm[0], # Using Mistral-7B-Instruct-v0.2 as the LLM model 0.7, # Temperature 1024, # Max Tokens 3, # Top K vector_db, db_progress ) return vector_db, collection_name, qa_chain, "Complete!" def upload_file(file_obj): list_file_path = [] for file in file_obj: if file is not None: file_path = file.name list_file_path.append(file_path) return list_file_path def demo(): with gr.Blocks(theme="base") as demo: vector_db = gr.State() collection_name = gr.State() qa_chain = gr.State() with gr.Tab("Step 1 - Document pre-processing"): document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)") slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True) slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True) db_progress = gr.Textbox(label="Vector database initialization", value="None") db_btn = gr.Button("Generate vector database...") with gr.Tab("Step 2 - QA chain initialization"): llm_progress = gr.Textbox(value="None", label="QA chain initialization") qachain_btn = gr.Button("Initialize question-answering chain...") with gr.Tab("Step 3 - Conversation with chatbot"): chatbot = gr.Chatbot(height=300) doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20) source1_page = gr.Number(label="Page", scale=1) doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20) source2_page = gr.Number(label="Page", scale=1) doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20) source3_page = gr.Number(label="Page", scale=1) msg = gr.Textbox(placeholder="Type message", container=True) submit_btn = gr.Button("Submit") clear_btn = gr.ClearButton([msg, chatbot]) document.upload(initialize_demo, inputs=[document, slider_chunk_size, slider_chunk_overlap, db_progress], outputs=[vector_db, collection_name, qa_chain, db_progress]) qachain_btn.click(initialize_llmchain, inputs=[qa_chain, llm_progress], outputs=[qa_chain, llm_progress]) submit_btn.click(lambda: None, inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page])