Spaces:
Building
Building
File size: 4,803 Bytes
ab7e98d fc0299f ab7e98d fc0299f 2d2ab61 fc0299f ab7e98d 2d2ab61 ab7e98d 2d2ab61 fc0299f ab7e98d fc0299f 2d2ab61 ab7e98d 2d2ab61 ab7e98d 2d2ab61 fc0299f 2d2ab61 fc0299f 2d2ab61 fc0299f 2d2ab61 fc0299f 2d2ab61 fc0299f 2d2ab61 fc0299f 2d2ab61 fc0299f 2d2ab61 fc0299f ab7e98d fc0299f ab7e98d 2d2ab61 ab7e98d 2d2ab61 ab7e98d 2d2ab61 ab7e98d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
"""
LLM Provider Interface for Flare
"""
import os
from abc import ABC, abstractmethod
from typing import Dict, List, Optional, Any
import httpx
from openai import AsyncOpenAI
from utils import log
class LLMInterface(ABC):
"""Abstract base class for LLM providers"""
def __init__(self, settings: Dict[str, Any] = None):
"""Initialize with settings"""
self.settings = settings or {}
self.internal_prompt = self.settings.get("internal_prompt", "")
self.parameter_collection_config = self.settings.get("parameter_collection_config", {})
@abstractmethod
async def generate(self, system_prompt: str, user_input: str, context: List[Dict]) -> str:
"""Generate response from LLM"""
pass
@abstractmethod
async def startup(self, project_config: Dict) -> bool:
"""Initialize LLM with project config"""
pass
class SparkLLM(LLMInterface):
"""Spark integration for HuggingFace"""
def __init__(self, spark_endpoint: str, spark_token: str, provider_variant: str = "spark-cloud", settings: Dict[str, Any] = None):
super().__init__(settings)
self.spark_endpoint = spark_endpoint.rstrip("/")
self.spark_token = spark_token
self.provider_variant = provider_variant
log(f"π SparkLLM initialized with endpoint: {self.spark_endpoint}")
async def generate(self, system_prompt: str, user_input: str, context: List[Dict]) -> str:
"""Generate response using Spark"""
headers = {
"Authorization": f"Bearer {self.spark_token}",
"Content-Type": "application/json"
}
payload = {
"system_prompt": system_prompt,
"user_input": user_input,
"context": context
}
try:
async with httpx.AsyncClient(timeout=60) as client:
response = await client.post(
f"{self.spark_endpoint}/generate",
json=payload,
headers=headers
)
response.raise_for_status()
data = response.json()
# Try different response fields
raw = data.get("model_answer", "").strip()
if not raw:
raw = (data.get("assistant") or data.get("text", "")).strip()
return raw
except Exception as e:
log(f"β Spark error: {e}")
raise
async def startup(self, project_config: Dict) -> bool:
"""Send startup request to Spark"""
# Implement if needed for Spark startup notification
return True
class GPT4oLLM(LLMInterface):
"""OpenAI GPT integration"""
def __init__(self, api_key: str, model: str = "gpt-4o-mini", settings: Dict[str, Any] = None):
super().__init__(settings)
self.api_key = api_key
self.model = model
self.client = AsyncOpenAI(api_key=api_key)
# Extract settings
self.temperature = settings.get("temperature", 0.7) if settings else 0.7
self.max_tokens = settings.get("max_tokens", 4096) if settings else 4096
log(f"β
Initialized GPT LLM with model: {model}")
async def generate(self, system_prompt: str, user_input: str, context: List[Dict]) -> str:
"""Generate response using OpenAI GPT"""
try:
# Build messages
messages = [{"role": "system", "content": system_prompt}]
# Add context
for msg in context:
messages.append({
"role": msg.get("role", "user"),
"content": msg.get("content", "")
})
# Add current user input
messages.append({"role": "user", "content": user_input})
# Generate response
response = await self.client.chat.completions.create(
model=self.model,
messages=messages,
temperature=self.temperature,
max_tokens=self.max_tokens
)
return response.choices[0].message.content.strip()
except Exception as e:
log(f"β GPT error: {e}")
raise
async def startup(self, project_config: Dict) -> bool:
"""Validate API key"""
try:
# Test API key with a simple request
response = await self.client.models.list()
log(f"β
OpenAI API key validated, available models: {len(response.data)}")
return True
except Exception as e:
log(f"β Invalid OpenAI API key: {e}")
return False |