Spaces:
Building
Building
File size: 5,728 Bytes
f99d306 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
"""
Voice Activity Detector for Flare
==================================
Detects speech/silence in audio streams
"""
import struct
from typing import Tuple
from datetime import datetime
from utils.logger import log_debug, log_warning
class VoiceActivityDetector:
"""Detect speech and silence in audio stream"""
def __init__(self,
energy_threshold: float = 500,
silence_threshold_ms: int = 2000,
sample_rate: int = 16000):
"""
Initialize VAD
Args:
energy_threshold: RMS energy threshold for speech detection
silence_threshold_ms: Milliseconds of silence before considering speech ended
sample_rate: Audio sample rate
"""
self.energy_threshold = energy_threshold
self.silence_threshold_ms = silence_threshold_ms
self.sample_rate = sample_rate
# State tracking
self.is_speaking = False
self.silence_start: Optional[datetime] = None
self.speech_start: Optional[datetime] = None
self.last_speech_time: Optional[datetime] = None
# Statistics
self.total_speech_chunks = 0
self.total_silence_chunks = 0
def process_chunk(self, audio_chunk: bytes) -> Tuple[bool, int]:
"""
Process audio chunk and detect speech/silence
Args:
audio_chunk: Raw PCM audio data (LINEAR16)
Returns:
Tuple of (is_speech, silence_duration_ms)
"""
try:
# Calculate RMS energy
rms_energy = self._calculate_rms_energy(audio_chunk)
is_speech = rms_energy > self.energy_threshold
now = datetime.utcnow()
if is_speech:
# Speech detected
if not self.is_speaking:
# Speech just started
self.is_speaking = True
self.speech_start = now
log_debug(f"π€ Speech started (RMS: {rms_energy})")
self.last_speech_time = now
self.silence_start = None
self.total_speech_chunks += 1
return True, 0
else:
# Silence detected
self.total_silence_chunks += 1
if self.is_speaking:
# Was speaking, now silent
if self.silence_start is None:
self.silence_start = now
log_debug(f"π Silence started (RMS: {rms_energy})")
# Calculate silence duration
silence_duration = (now - self.silence_start).total_seconds() * 1000
if silence_duration >= self.silence_threshold_ms:
# Speech has ended
self.is_speaking = False
log_debug(f"π¬ Speech ended after {silence_duration:.0f}ms of silence")
return False, int(silence_duration)
else:
# Already in silence
return False, 0
except Exception as e:
log_warning(f"VAD processing error: {e}")
# On error, assume speech to avoid cutting off
return True, 0
def _calculate_rms_energy(self, audio_chunk: bytes) -> float:
"""Calculate RMS energy of audio chunk"""
try:
# Handle empty or invalid chunk
if not audio_chunk or len(audio_chunk) < 2:
return 0.0
# Ensure even number of bytes for 16-bit audio
if len(audio_chunk) % 2 != 0:
audio_chunk = audio_chunk[:-1]
# Convert bytes to int16 samples
num_samples = len(audio_chunk) // 2
samples = struct.unpack(f'{num_samples}h', audio_chunk)
if not samples:
return 0.0
# Calculate RMS
sum_squares = sum(s * s for s in samples)
rms = (sum_squares / len(samples)) ** 0.5
return rms
except Exception as e:
log_warning(f"RMS calculation error: {e}")
return 0.0
def reset(self):
"""Reset VAD state"""
self.is_speaking = False
self.silence_start = None
self.speech_start = None
self.last_speech_time = None
log_debug("π VAD state reset")
def get_speech_duration(self) -> float:
"""Get current speech duration in seconds"""
if self.speech_start and self.is_speaking:
return (datetime.utcnow() - self.speech_start).total_seconds()
return 0.0
def get_silence_duration(self) -> float:
"""Get current silence duration in seconds"""
if self.silence_start and not self.is_speaking:
return (datetime.utcnow() - self.silence_start).total_seconds()
return 0.0
def get_stats(self) -> dict:
"""Get VAD statistics"""
return {
"is_speaking": self.is_speaking,
"speech_chunks": self.total_speech_chunks,
"silence_chunks": self.total_silence_chunks,
"speech_duration": self.get_speech_duration(),
"silence_duration": self.get_silence_duration(),
"energy_threshold": self.energy_threshold,
"silence_threshold_ms": self.silence_threshold_ms
} |