Spaces:
Building
Building
""" | |
Spark LLM Implementation | |
""" | |
import os | |
import httpx | |
import json | |
from typing import Dict, List, Any, AsyncIterator | |
from .llm_interface import LLMInterface | |
from utils.logger import log_info, log_error, log_warning, log_debug | |
# Get timeout from environment | |
DEFAULT_LLM_TIMEOUT = int(os.getenv("LLM_TIMEOUT_SECONDS", "60")) | |
MAX_RESPONSE_LENGTH = int(os.getenv("LLM_MAX_RESPONSE_LENGTH", "4096")) | |
class SparkLLM(LLMInterface): | |
"""Spark LLM integration with improved error handling""" | |
def __init__(self, spark_endpoint: str, spark_token: str, provider_variant: str = "cloud", settings: Dict[str, Any] = None): | |
super().__init__(settings) | |
self.spark_endpoint = spark_endpoint.rstrip("/") | |
self.spark_token = spark_token | |
self.provider_variant = provider_variant | |
self.timeout = self.settings.get("timeout", DEFAULT_LLM_TIMEOUT) | |
log_info(f"π SparkLLM initialized", endpoint=self.spark_endpoint, timeout=self.timeout) | |
async def generate(self, system_prompt: str, user_input: str, context: List[Dict]) -> str: | |
"""Generate response with improved error handling and streaming support""" | |
headers = { | |
"Authorization": f"Bearer {self.spark_token}", | |
"Content-Type": "application/json" | |
} | |
# Build context messages | |
messages = [] | |
if system_prompt: | |
messages.append({ | |
"role": "system", | |
"content": system_prompt | |
}) | |
for msg in context[-10:]: # Last 10 messages for context | |
messages.append({ | |
"role": msg.get("role", "user"), | |
"content": msg.get("content", "") | |
}) | |
messages.append({ | |
"role": "user", | |
"content": user_input | |
}) | |
payload = { | |
"messages": messages, | |
"mode": self.provider_variant, | |
"max_tokens": self.settings.get("max_tokens", 2048), | |
"temperature": self.settings.get("temperature", 0.7), | |
"stream": False # For now, no streaming | |
} | |
try: | |
async with httpx.AsyncClient(timeout=self.timeout) as client: | |
with LogTimer(f"Spark LLM request"): | |
response = await client.post( | |
f"{self.spark_endpoint}/generate", | |
json=payload, | |
headers=headers | |
) | |
# Check for rate limiting | |
if response.status_code == 429: | |
retry_after = response.headers.get("Retry-After", "60") | |
log_warning(f"Rate limited by Spark", retry_after=retry_after) | |
raise httpx.HTTPStatusError( | |
f"Rate limited. Retry after {retry_after}s", | |
request=response.request, | |
response=response | |
) | |
response.raise_for_status() | |
result = response.json() | |
# Extract response | |
content = result.get("model_answer", "") | |
# Check response length | |
if len(content) > MAX_RESPONSE_LENGTH: | |
log_warning(f"Response exceeded max length, truncating", | |
original_length=len(content), | |
max_length=MAX_RESPONSE_LENGTH) | |
content = content[:MAX_RESPONSE_LENGTH] + "..." | |
return content | |
except httpx.TimeoutException: | |
log_error(f"Spark request timed out", timeout=self.timeout) | |
raise | |
except httpx.HTTPStatusError as e: | |
log_error(f"Spark HTTP error", | |
status_code=e.response.status_code, | |
response=e.response.text[:500]) | |
raise | |
except Exception as e: | |
log_error("Spark unexpected error", error=str(e)) | |
raise | |
def get_provider_name(self) -> str: | |
return f"spark-{self.provider_variant}" | |
def get_model_info(self) -> Dict[str, Any]: | |
return { | |
"provider": "spark", | |
"variant": self.provider_variant, | |
"endpoint": self.spark_endpoint, | |
"max_tokens": self.settings.get("max_tokens", 2048), | |
"temperature": self.settings.get("temperature", 0.7) | |
} |