flare / stt /stt_google.py
ciyidogan's picture
Update stt/stt_google.py
2178ca6 verified
"""
Google Cloud Speech-to-Text Implementation - Simple Batch Mode
"""
from typing import Optional, List
from datetime import datetime
import io
import wave
import struct
from google.cloud import speech
from google.cloud.speech import RecognitionConfig, RecognitionAudio
from utils.logger import log_info, log_error, log_debug, log_warning
from .stt_interface import STTInterface, STTConfig, TranscriptionResult
class GoogleSTT(STTInterface):
def __init__(self, credentials_path: Optional[str] = None):
"""
Initialize Google STT
Args:
credentials_path: Path to service account JSON file (optional if using default credentials)
"""
try:
# Initialize client
if credentials_path:
self.client = speech.SpeechClient.from_service_account_file(credentials_path)
log_info(f"✅ Google STT initialized with service account: {credentials_path}")
else:
# Use default credentials (ADC)
self.client = speech.SpeechClient()
log_info("✅ Google STT initialized with default credentials")
except Exception as e:
log_error(f"❌ Failed to initialize Google STT: {str(e)}")
raise
def _map_language_code(self, language: str) -> str:
"""Map language codes to Google format"""
# Google uses BCP-47 language codes
language_map = {
"tr": "tr-TR",
"tr-TR": "tr-TR",
"en": "en-US",
"en-US": "en-US",
"en-GB": "en-GB",
"de": "de-DE",
"de-DE": "de-DE",
"fr": "fr-FR",
"fr-FR": "fr-FR",
"es": "es-ES",
"es-ES": "es-ES",
"it": "it-IT",
"it-IT": "it-IT",
"pt": "pt-BR",
"pt-BR": "pt-BR",
"ru": "ru-RU",
"ru-RU": "ru-RU",
"ja": "ja-JP",
"ja-JP": "ja-JP",
"ko": "ko-KR",
"ko-KR": "ko-KR",
"zh": "zh-CN",
"zh-CN": "zh-CN",
"ar": "ar-SA",
"ar-SA": "ar-SA",
}
# Default to the language itself if not in map
return language_map.get(language, language)
def _analyze_audio_content(self, audio_data: bytes):
"""Analyze audio content for debugging"""
try:
if len(audio_data) < 100:
log_warning(f"⚠️ Very short audio data: {len(audio_data)} bytes")
return
# Convert to samples
samples = struct.unpack(f'{len(audio_data)//2}h', audio_data)
total_samples = len(samples)
# Basic stats
non_zero_samples = [s for s in samples if s != 0]
zero_count = total_samples - len(non_zero_samples)
zero_percentage = (zero_count / total_samples) * 100
log_info(f"🔍 Audio stats: {total_samples} total samples, {zero_count} zeros ({zero_percentage:.1f}%)")
if non_zero_samples:
avg_amplitude = sum(abs(s) for s in non_zero_samples) / len(non_zero_samples)
max_amplitude = max(abs(s) for s in non_zero_samples)
log_info(f"🔍 Non-zero stats: avg={avg_amplitude:.1f}, max={max_amplitude}")
# Section analysis
section_size = total_samples // 10
log_info(f"🔍 Section analysis (each {section_size} samples):")
for i in range(10):
start = i * section_size
end = min((i + 1) * section_size, total_samples)
section = samples[start:end]
section_non_zero = [s for s in section if s != 0]
section_zeros = len(section) - len(section_non_zero)
section_zero_pct = (section_zeros / len(section)) * 100
if section_non_zero:
section_max = max(abs(s) for s in section_non_zero)
section_avg = sum(abs(s) for s in section_non_zero) / len(section_non_zero)
log_info(f"Section {i+1}: max={section_max}, avg={section_avg:.1f}, zeros={section_zero_pct:.1f}%")
# Find where speech starts (first significant activity)
speech_threshold = 1000 # Minimum amplitude to consider as speech
speech_start = None
for i, sample in enumerate(samples):
if abs(sample) > speech_threshold:
speech_start = i
break
if speech_start is not None:
log_info(f"🎤 Speech detected starting at sample {speech_start} ({speech_start/16000:.2f}s)")
else:
log_warning(f"⚠️ No clear speech signal detected (threshold: {speech_threshold})")
else:
log_warning(f"⚠️ All samples are zero - no audio content")
except Exception as e:
log_error(f"❌ Error analyzing audio: {e}")
def _trim_silence(self, audio_data: bytes) -> bytes:
"""Trim silence from beginning and end of audio"""
try:
if len(audio_data) < 100:
return audio_data
# Convert to samples
samples = list(struct.unpack(f'{len(audio_data)//2}h', audio_data))
# Silence threshold - daha düşük bir threshold kullan
silence_threshold = 200 # Daha düşük threshold
# Find first non-silent sample
start_idx = 0
for i, sample in enumerate(samples):
if abs(sample) > silence_threshold:
start_idx = i
break
# Find last non-silent sample
end_idx = len(samples) - 1
for i in range(len(samples) - 1, -1, -1):
if abs(samples[i]) > silence_threshold:
end_idx = i
break
# Ensure we have some audio
if start_idx >= end_idx:
log_warning("⚠️ No audio content above silence threshold")
return audio_data
# Add small padding (250ms = 4000 samples at 16kHz)
padding = 2000 # 125ms padding
start_idx = max(0, start_idx - padding)
end_idx = min(len(samples) - 1, end_idx + padding)
# Extract trimmed audio
trimmed_samples = samples[start_idx:end_idx + 1]
log_info(f"🔧 Silence trimming: {len(samples)}{len(trimmed_samples)} samples")
log_info(f"🔧 Trimmed duration: {len(trimmed_samples)/16000:.2f}s")
# Convert back to bytes
trimmed_audio = struct.pack(f'{len(trimmed_samples)}h', *trimmed_samples)
return trimmed_audio
except Exception as e:
log_error(f"❌ Silence trimming failed: {e}")
return audio_data
async def transcribe(self, audio_data: bytes, config: STTConfig) -> Optional[TranscriptionResult]:
"""Transcribe audio data using Google Cloud Speech API"""
try:
# Check if we have audio to transcribe
if not audio_data:
log_warning("⚠️ No audio data provided")
return None
log_info(f"📊 Transcribing {len(audio_data)} bytes of audio")
# ✅ Raw audio'yu direkt WAV olarak kaydet ve test et
import tempfile
import os
import wave
# Raw audio'yu WAV olarak kaydet
raw_wav_file = f"/tmp/raw_audio_{datetime.now().strftime('%H%M%S')}.wav"
with wave.open(raw_wav_file, 'wb') as wav_file:
wav_file.setnchannels(1)
wav_file.setsampwidth(2)
wav_file.setframerate(config.sample_rate)
wav_file.writeframes(audio_data)
log_info(f"🎯 RAW audio saved as WAV: {raw_wav_file}")
# Test koduyla test et
try:
import subprocess
result = subprocess.run([
'python', './test_single_wav.py', raw_wav_file
], capture_output=True, text=True, timeout=30)
log_info(f"🔍 Raw WAV test result: {result.stdout}")
if result.stderr:
log_error(f"🔍 Raw WAV test error: {result.stderr}")
# Eğer raw audio çalışıyorsa, sorun trimming'te
if "Transcript:" in result.stdout:
log_info("✅ RAW audio works! Problem is in our processing.")
else:
log_error("❌ Even RAW audio doesn't work - problem in frontend!")
except Exception as e:
log_warning(f"Could not run raw audio test: {e}")
# ✅ Audio analizi
self._analyze_audio_content(audio_data)
# ✅ Silence trimming ekle
trimmed_audio = self._trim_silence(audio_data)
if len(trimmed_audio) < 8000: # 0.5 saniyeden az
log_warning("⚠️ Audio too short after trimming")
return None
# Trimmed audio'yu da kaydet
trimmed_wav_file = f"/tmp/trimmed_audio_{datetime.now().strftime('%H%M%S')}.wav"
with wave.open(trimmed_wav_file, 'wb') as wav_file:
wav_file.setnchannels(1)
wav_file.setsampwidth(2)
wav_file.setframerate(config.sample_rate)
wav_file.writeframes(trimmed_audio)
log_info(f"🎯 TRIMMED audio saved as WAV: {trimmed_wav_file}")
# Trimmed audio'yu da test et
try:
result = subprocess.run([
'python', '/app/test_single_wav.py', trimmed_wav_file
], capture_output=True, text=True, timeout=30)
log_info(f"🔍 Trimmed WAV test result: {result.stdout}")
if result.stderr:
log_error(f"🔍 Trimmed WAV test error: {result.stderr}")
except Exception as e:
log_warning(f"Could not run trimmed audio test: {e}")
# Sonuç olarak Google'a gönderme
log_info("❌ Skipping Google API call for debugging")
return None
except Exception as e:
log_error(f"❌ Error during transcription: {str(e)}")
import traceback
log_error(f"Traceback: {traceback.format_exc()}")
return None
def _create_wav_like_test(self, audio_data: bytes, sample_rate: int) -> bytes:
"""Create WAV exactly like test code using wave module"""
try:
import tempfile
import os
import wave
# Geçici dosya oluştur
temp_wav = tempfile.mktemp(suffix='.wav')
try:
# Wave file oluştur - test kodundaki gibi
with wave.open(temp_wav, 'wb') as wav_file:
wav_file.setnchannels(1) # Mono
wav_file.setsampwidth(2) # 16-bit
wav_file.setframerate(sample_rate) # 16kHz
wav_file.writeframes(audio_data)
# Dosyayı geri oku
with open(temp_wav, 'rb') as f:
wav_data = f.read()
log_info(f"🔧 WAV created using wave module: {len(wav_data)} bytes")
# Debug: Wave file'ı kontrol et
with wave.open(temp_wav, 'rb') as wav_file:
log_info(f"🔧 Wave validation: {wav_file.getnchannels()}ch, {wav_file.getframerate()}Hz, {wav_file.getnframes()} frames")
return wav_data
finally:
# Cleanup
if os.path.exists(temp_wav):
os.unlink(temp_wav)
except Exception as e:
log_error(f"❌ Wave module WAV creation failed: {e}")
# Fallback to manual method
return self._convert_to_wav_proper(audio_data, sample_rate)
def get_supported_languages(self) -> List[str]:
"""Get list of supported language codes"""
# Google Cloud Speech-to-Text supported languages (partial list)
return [
"tr-TR", "en-US", "en-GB", "en-AU", "en-CA", "en-IN",
"es-ES", "es-MX", "es-AR", "fr-FR", "fr-CA", "de-DE",
"it-IT", "pt-BR", "pt-PT", "ru-RU", "ja-JP", "ko-KR",
"zh-CN", "zh-TW", "ar-SA", "ar-EG", "hi-IN", "nl-NL",
"pl-PL", "sv-SE", "da-DK", "no-NO", "fi-FI", "el-GR",
"he-IL", "th-TH", "vi-VN", "id-ID", "ms-MY", "fil-PH"
]
def get_provider_name(self) -> str:
"""Get provider name"""
return "google"