Spaces:
Building
Building
Create stt_base.py
Browse files- stt/stt_base.py +206 -0
stt/stt_base.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Base STT Implementation
|
3 |
+
======================
|
4 |
+
Common audio processing and validation for all STT providers
|
5 |
+
"""
|
6 |
+
import struct
|
7 |
+
from typing import Optional, Tuple, List
|
8 |
+
from datetime import datetime
|
9 |
+
from abc import ABC, abstractmethod
|
10 |
+
|
11 |
+
from .stt_interface import STTInterface, STTConfig, TranscriptionResult
|
12 |
+
from utils.logger import log_info, log_error, log_debug, log_warning
|
13 |
+
|
14 |
+
|
15 |
+
class STTBase(STTInterface, ABC):
|
16 |
+
"""Base class for all STT implementations with common audio processing"""
|
17 |
+
|
18 |
+
def __init__(self):
|
19 |
+
super().__init__()
|
20 |
+
|
21 |
+
async def transcribe(self, audio_data: bytes, config: STTConfig) -> Optional[TranscriptionResult]:
|
22 |
+
"""Main transcription method with preprocessing"""
|
23 |
+
try:
|
24 |
+
# 1. Validate input
|
25 |
+
if not audio_data:
|
26 |
+
log_warning("β οΈ No audio data provided")
|
27 |
+
return None
|
28 |
+
|
29 |
+
log_info(f"π Transcribing {len(audio_data)} bytes of audio")
|
30 |
+
|
31 |
+
# 2. Analyze and validate audio
|
32 |
+
analysis_result = self._analyze_audio(audio_data, config.sample_rate)
|
33 |
+
if not analysis_result.is_valid:
|
34 |
+
log_warning(f"β οΈ Audio validation failed: {analysis_result.reason}")
|
35 |
+
return None
|
36 |
+
|
37 |
+
# 3. Preprocess audio if needed
|
38 |
+
processed_audio = self._preprocess_audio(audio_data, config)
|
39 |
+
|
40 |
+
# 4. Call provider-specific implementation
|
41 |
+
return await self._transcribe_impl(processed_audio, config, analysis_result)
|
42 |
+
|
43 |
+
except Exception as e:
|
44 |
+
log_error(f"β Error during transcription: {str(e)}")
|
45 |
+
import traceback
|
46 |
+
log_error(f"Traceback: {traceback.format_exc()}")
|
47 |
+
return None
|
48 |
+
|
49 |
+
@abstractmethod
|
50 |
+
async def _transcribe_impl(self, audio_data: bytes, config: STTConfig, analysis: 'AudioAnalysis') -> Optional[TranscriptionResult]:
|
51 |
+
"""Provider-specific transcription implementation"""
|
52 |
+
pass
|
53 |
+
|
54 |
+
def _analyze_audio(self, audio_data: bytes, sample_rate: int) -> 'AudioAnalysis':
|
55 |
+
"""Analyze audio quality and content"""
|
56 |
+
try:
|
57 |
+
samples = struct.unpack(f'{len(audio_data)//2}h', audio_data)
|
58 |
+
total_samples = len(samples)
|
59 |
+
|
60 |
+
# Basic statistics
|
61 |
+
non_zero_samples = [s for s in samples if s != 0]
|
62 |
+
zero_count = total_samples - len(non_zero_samples)
|
63 |
+
|
64 |
+
if non_zero_samples:
|
65 |
+
avg_amplitude = sum(abs(s) for s in non_zero_samples) / len(non_zero_samples)
|
66 |
+
max_amplitude = max(abs(s) for s in non_zero_samples)
|
67 |
+
else:
|
68 |
+
avg_amplitude = 0
|
69 |
+
max_amplitude = 0
|
70 |
+
|
71 |
+
log_info(f"π Audio stats: {total_samples} total samples, {zero_count} zeros ({zero_count/total_samples:.1%})")
|
72 |
+
log_info(f"π Non-zero stats: avg={avg_amplitude:.1f}, max={max_amplitude}")
|
73 |
+
|
74 |
+
# Section analysis (10 sections)
|
75 |
+
section_size = total_samples // 10
|
76 |
+
sections = []
|
77 |
+
|
78 |
+
for i in range(10):
|
79 |
+
start_idx = i * section_size
|
80 |
+
end_idx = (i + 1) * section_size if i < 9 else total_samples
|
81 |
+
section = samples[start_idx:end_idx]
|
82 |
+
|
83 |
+
section_non_zero = [s for s in section if s != 0]
|
84 |
+
section_max = max(abs(s) for s in section_non_zero) if section_non_zero else 0
|
85 |
+
section_avg = sum(abs(s) for s in section_non_zero) / len(section_non_zero) if section_non_zero else 0
|
86 |
+
zero_ratio = (len(section) - len(section_non_zero)) / len(section)
|
87 |
+
|
88 |
+
sections.append({
|
89 |
+
'max': section_max,
|
90 |
+
'avg': section_avg,
|
91 |
+
'zero_ratio': zero_ratio
|
92 |
+
})
|
93 |
+
|
94 |
+
log_info(f" Section {i+1}: max={section_max}, avg={section_avg:.1f}, zeros={zero_ratio:.1%}")
|
95 |
+
|
96 |
+
# Find speech start
|
97 |
+
speech_start_idx = self._find_speech_start(samples, sample_rate)
|
98 |
+
speech_start_time = speech_start_idx / sample_rate if speech_start_idx >= 0 else -1
|
99 |
+
|
100 |
+
if speech_start_idx >= 0:
|
101 |
+
log_info(f"π€ Speech detected starting at sample {speech_start_idx} ({speech_start_time:.2f}s)")
|
102 |
+
else:
|
103 |
+
log_warning("β οΈ No speech detected above threshold in entire audio")
|
104 |
+
|
105 |
+
# Validation
|
106 |
+
is_valid = True
|
107 |
+
reason = ""
|
108 |
+
|
109 |
+
if max_amplitude < 100:
|
110 |
+
is_valid = False
|
111 |
+
reason = f"Audio appears silent: max_amplitude={max_amplitude}"
|
112 |
+
elif zero_count / total_samples > 0.95:
|
113 |
+
is_valid = False
|
114 |
+
reason = f"Audio is mostly zeros: {zero_count/total_samples:.1%}"
|
115 |
+
elif speech_start_idx < 0:
|
116 |
+
is_valid = False
|
117 |
+
reason = "No speech detected"
|
118 |
+
|
119 |
+
return AudioAnalysis(
|
120 |
+
total_samples=total_samples,
|
121 |
+
sample_rate=sample_rate,
|
122 |
+
zero_count=zero_count,
|
123 |
+
avg_amplitude=avg_amplitude,
|
124 |
+
max_amplitude=max_amplitude,
|
125 |
+
sections=sections,
|
126 |
+
speech_start_idx=speech_start_idx,
|
127 |
+
speech_start_time=speech_start_time,
|
128 |
+
is_valid=is_valid,
|
129 |
+
reason=reason
|
130 |
+
)
|
131 |
+
|
132 |
+
except Exception as e:
|
133 |
+
log_error(f"Audio analysis failed: {e}")
|
134 |
+
return AudioAnalysis(
|
135 |
+
total_samples=0,
|
136 |
+
sample_rate=sample_rate,
|
137 |
+
is_valid=False,
|
138 |
+
reason=f"Analysis failed: {e}"
|
139 |
+
)
|
140 |
+
|
141 |
+
def _find_speech_start(self, samples: List[int], sample_rate: int, threshold: int = 500) -> int:
|
142 |
+
"""Find the starting point of speech in audio"""
|
143 |
+
window_size = 100
|
144 |
+
|
145 |
+
for i in range(0, len(samples) - window_size, window_size):
|
146 |
+
window = samples[i:i + window_size]
|
147 |
+
rms = (sum(s * s for s in window) / window_size) ** 0.5
|
148 |
+
|
149 |
+
if rms > threshold:
|
150 |
+
return i
|
151 |
+
|
152 |
+
return -1
|
153 |
+
|
154 |
+
def _preprocess_audio(self, audio_data: bytes, config: STTConfig) -> bytes:
|
155 |
+
"""Preprocess audio if needed (can be overridden by providers)"""
|
156 |
+
# Default: no preprocessing
|
157 |
+
return audio_data
|
158 |
+
|
159 |
+
def _clean_audio_silence(self, audio_data: bytes, threshold: int = 50) -> bytes:
|
160 |
+
"""Remove leading/trailing silence"""
|
161 |
+
try:
|
162 |
+
samples = struct.unpack(f'{len(audio_data)//2}h', audio_data)
|
163 |
+
|
164 |
+
# Find first non-silent sample
|
165 |
+
start_idx = 0
|
166 |
+
for i, sample in enumerate(samples):
|
167 |
+
if abs(sample) > threshold:
|
168 |
+
start_idx = i
|
169 |
+
break
|
170 |
+
|
171 |
+
# Find last non-silent sample
|
172 |
+
end_idx = len(samples) - 1
|
173 |
+
for i in range(len(samples) - 1, -1, -1):
|
174 |
+
if abs(samples[i]) > threshold:
|
175 |
+
end_idx = i
|
176 |
+
break
|
177 |
+
|
178 |
+
# Add padding
|
179 |
+
start_idx = max(0, start_idx - 100)
|
180 |
+
end_idx = min(len(samples) - 1, end_idx + 100)
|
181 |
+
|
182 |
+
# Convert back
|
183 |
+
cleaned_samples = samples[start_idx:end_idx + 1]
|
184 |
+
cleaned_audio = struct.pack(f'{len(cleaned_samples)}h', *cleaned_samples)
|
185 |
+
|
186 |
+
log_debug(f"Audio cleaning: {len(audio_data)} β {len(cleaned_audio)} bytes")
|
187 |
+
return cleaned_audio
|
188 |
+
|
189 |
+
except Exception as e:
|
190 |
+
log_warning(f"Audio cleaning failed: {e}, using original")
|
191 |
+
return audio_data
|
192 |
+
|
193 |
+
|
194 |
+
@dataclass
|
195 |
+
class AudioAnalysis:
|
196 |
+
"""Audio analysis results"""
|
197 |
+
total_samples: int = 0
|
198 |
+
sample_rate: int = 16000
|
199 |
+
zero_count: int = 0
|
200 |
+
avg_amplitude: float = 0.0
|
201 |
+
max_amplitude: int = 0
|
202 |
+
sections: List[dict] = field(default_factory=list)
|
203 |
+
speech_start_idx: int = -1
|
204 |
+
speech_start_time: float = -1.0
|
205 |
+
is_valid: bool = False
|
206 |
+
reason: str = ""
|