Spaces:
Building
Building
Update llm_factory.py
Browse files- llm_factory.py +31 -25
llm_factory.py
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
LLM Provider Factory for Flare
|
3 |
"""
|
4 |
import os
|
5 |
-
from typing import Optional
|
6 |
from dotenv import load_dotenv
|
7 |
|
8 |
from llm_interface import LLMInterface, SparkLLM, GPT4oLLM
|
@@ -10,58 +10,64 @@ from config_provider import ConfigProvider
|
|
10 |
from utils import log
|
11 |
|
12 |
class LLMFactory:
|
13 |
-
"""Factory class to create appropriate LLM provider based on
|
14 |
|
15 |
@staticmethod
|
16 |
def create_provider() -> LLMInterface:
|
17 |
"""Create and return appropriate LLM provider based on config"""
|
18 |
cfg = ConfigProvider.get()
|
19 |
-
|
20 |
|
21 |
-
if not
|
22 |
raise ValueError("No LLM provider configured")
|
23 |
|
24 |
-
provider_name =
|
25 |
log(f"π Creating LLM provider: {provider_name}")
|
26 |
|
27 |
-
# Get provider
|
28 |
-
|
29 |
-
if not
|
30 |
raise ValueError(f"Unknown LLM provider: {provider_name}")
|
31 |
|
32 |
# Get API key
|
33 |
api_key = LLMFactory._get_api_key(provider_name)
|
34 |
-
if not api_key and
|
35 |
raise ValueError(f"API key required for {provider_name} but not configured")
|
36 |
|
37 |
-
# Get
|
38 |
-
|
39 |
-
if not endpoint and provider_def.requires_endpoint:
|
40 |
-
raise ValueError(f"Endpoint required for {provider_name} but not configured")
|
41 |
|
42 |
# Create appropriate provider
|
43 |
-
if provider_name
|
44 |
-
return LLMFactory._create_spark_provider(
|
45 |
elif provider_name in ("gpt4o", "gpt4o-mini"):
|
46 |
-
return LLMFactory._create_gpt_provider(provider_name, api_key,
|
47 |
else:
|
48 |
raise ValueError(f"Unsupported LLM provider: {provider_name}")
|
49 |
|
50 |
@staticmethod
|
51 |
-
def _create_spark_provider(
|
52 |
"""Create Spark LLM provider"""
|
53 |
-
|
|
|
|
|
|
|
54 |
log(f"π Endpoint: {endpoint}")
|
55 |
|
|
|
|
|
|
|
|
|
|
|
56 |
return SparkLLM(
|
57 |
-
spark_endpoint=endpoint,
|
58 |
spark_token=api_key,
|
59 |
-
provider_variant=
|
60 |
settings=settings
|
61 |
)
|
62 |
|
63 |
@staticmethod
|
64 |
-
def _create_gpt_provider(model_type: str, api_key: str, settings:
|
65 |
"""Create GPT-4o LLM provider"""
|
66 |
# Determine model
|
67 |
model = "gpt-4o-mini" if model_type == "gpt4o-mini" else "gpt-4o"
|
@@ -88,8 +94,6 @@ class LLMFactory:
|
|
88 |
# Then check environment based on provider
|
89 |
env_var_map = {
|
90 |
"spark": "SPARK_TOKEN",
|
91 |
-
"spark_cloud": "SPARK_TOKEN",
|
92 |
-
"spark_onpremise": "SPARK_TOKEN",
|
93 |
"gpt4o": "OPENAI_API_KEY",
|
94 |
"gpt4o-mini": "OPENAI_API_KEY",
|
95 |
}
|
@@ -101,11 +105,13 @@ class LLMFactory:
|
|
101 |
api_key = os.environ.get(env_var)
|
102 |
if api_key:
|
103 |
log(f"π Using {env_var} from HuggingFace secrets")
|
|
|
104 |
else:
|
105 |
-
# Local
|
106 |
load_dotenv()
|
107 |
api_key = os.getenv(env_var)
|
108 |
if api_key:
|
109 |
log(f"π Using {env_var} from .env file")
|
|
|
110 |
|
111 |
-
return
|
|
|
2 |
LLM Provider Factory for Flare
|
3 |
"""
|
4 |
import os
|
5 |
+
from typing import Optional, Dict, Any
|
6 |
from dotenv import load_dotenv
|
7 |
|
8 |
from llm_interface import LLMInterface, SparkLLM, GPT4oLLM
|
|
|
10 |
from utils import log
|
11 |
|
12 |
class LLMFactory:
|
13 |
+
"""Factory class to create appropriate LLM provider based on llm_provider config"""
|
14 |
|
15 |
@staticmethod
|
16 |
def create_provider() -> LLMInterface:
|
17 |
"""Create and return appropriate LLM provider based on config"""
|
18 |
cfg = ConfigProvider.get()
|
19 |
+
llm_provider = cfg.global_config.llm_provider
|
20 |
|
21 |
+
if not llm_provider or not llm_provider.name:
|
22 |
raise ValueError("No LLM provider configured")
|
23 |
|
24 |
+
provider_name = llm_provider.name
|
25 |
log(f"π Creating LLM provider: {provider_name}")
|
26 |
|
27 |
+
# Get provider config
|
28 |
+
provider_config = cfg.global_config.get_provider_config("llm", provider_name)
|
29 |
+
if not provider_config:
|
30 |
raise ValueError(f"Unknown LLM provider: {provider_name}")
|
31 |
|
32 |
# Get API key
|
33 |
api_key = LLMFactory._get_api_key(provider_name)
|
34 |
+
if not api_key and provider_config.requires_api_key:
|
35 |
raise ValueError(f"API key required for {provider_name} but not configured")
|
36 |
|
37 |
+
# Get settings
|
38 |
+
settings = llm_provider.settings or {}
|
|
|
|
|
39 |
|
40 |
# Create appropriate provider
|
41 |
+
if provider_name == "spark":
|
42 |
+
return LLMFactory._create_spark_provider(api_key, llm_provider.endpoint, settings)
|
43 |
elif provider_name in ("gpt4o", "gpt4o-mini"):
|
44 |
+
return LLMFactory._create_gpt_provider(provider_name, api_key, settings)
|
45 |
else:
|
46 |
raise ValueError(f"Unsupported LLM provider: {provider_name}")
|
47 |
|
48 |
@staticmethod
|
49 |
+
def _create_spark_provider(api_key: str, endpoint: Optional[str], settings: Dict[str, Any]) -> SparkLLM:
|
50 |
"""Create Spark LLM provider"""
|
51 |
+
if not endpoint:
|
52 |
+
raise ValueError("Spark requires endpoint to be configured")
|
53 |
+
|
54 |
+
log(f"π Creating SparkLLM provider")
|
55 |
log(f"π Endpoint: {endpoint}")
|
56 |
|
57 |
+
# Determine provider variant for backward compatibility
|
58 |
+
provider_variant = "spark-cloud"
|
59 |
+
if not ConfigProvider.get().global_config.is_cloud_mode():
|
60 |
+
provider_variant = "spark-onpremise"
|
61 |
+
|
62 |
return SparkLLM(
|
63 |
+
spark_endpoint=str(endpoint),
|
64 |
spark_token=api_key,
|
65 |
+
provider_variant=provider_variant,
|
66 |
settings=settings
|
67 |
)
|
68 |
|
69 |
@staticmethod
|
70 |
+
def _create_gpt_provider(model_type: str, api_key: str, settings: Dict[str, Any]) -> GPT4oLLM:
|
71 |
"""Create GPT-4o LLM provider"""
|
72 |
# Determine model
|
73 |
model = "gpt-4o-mini" if model_type == "gpt4o-mini" else "gpt-4o"
|
|
|
94 |
# Then check environment based on provider
|
95 |
env_var_map = {
|
96 |
"spark": "SPARK_TOKEN",
|
|
|
|
|
97 |
"gpt4o": "OPENAI_API_KEY",
|
98 |
"gpt4o-mini": "OPENAI_API_KEY",
|
99 |
}
|
|
|
105 |
api_key = os.environ.get(env_var)
|
106 |
if api_key:
|
107 |
log(f"π Using {env_var} from HuggingFace secrets")
|
108 |
+
return api_key
|
109 |
else:
|
110 |
+
# Local development
|
111 |
load_dotenv()
|
112 |
api_key = os.getenv(env_var)
|
113 |
if api_key:
|
114 |
log(f"π Using {env_var} from .env file")
|
115 |
+
return api_key
|
116 |
|
117 |
+
return None
|