Spaces:
Building
Building
Upload 5 files
Browse files- llm/llm_factory.py +97 -0
- llm/llm_interface.py +35 -0
- llm/llm_openai.py +104 -0
- llm/llm_spark.py +116 -0
- llm/llm_startup.py +102 -0
llm/llm_factory.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
LLM Provider Factory for Flare
|
3 |
+
"""
|
4 |
+
import os
|
5 |
+
from typing import Optional
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
|
8 |
+
from llm_interface import LLMInterface
|
9 |
+
from llm_spark import SparkLLM
|
10 |
+
from llm_openai import OpenAILLM
|
11 |
+
from config_provider import ConfigProvider
|
12 |
+
from logger import log_info, log_error, log_warning, log_debug
|
13 |
+
|
14 |
+
class LLMFactory:
|
15 |
+
@staticmethod
|
16 |
+
def create_provider() -> LLMInterface:
|
17 |
+
"""Create LLM provider based on configuration"""
|
18 |
+
cfg = ConfigProvider.get()
|
19 |
+
llm_config = cfg.global_config.llm_provider
|
20 |
+
|
21 |
+
if not llm_config:
|
22 |
+
raise ValueError("No LLM provider configured")
|
23 |
+
|
24 |
+
provider_name = llm_config.name
|
25 |
+
log_info(f"🏭 Creating LLM provider: {provider_name}")
|
26 |
+
|
27 |
+
# Get provider definition
|
28 |
+
provider_def = cfg.global_config.get_provider_config("llm", provider_name)
|
29 |
+
if not provider_def:
|
30 |
+
raise ValueError(f"Unknown LLM provider: {provider_name}")
|
31 |
+
|
32 |
+
# Get API key
|
33 |
+
api_key = LLMFactory._get_api_key(provider_name, llm_config.api_key)
|
34 |
+
|
35 |
+
# Create provider based on name
|
36 |
+
if provider_name == "spark":
|
37 |
+
return LLMFactory._create_spark_provider(llm_config, api_key, provider_def)
|
38 |
+
elif provider_name == "spark_cloud":
|
39 |
+
return LLMFactory._create_spark_provider(llm_config, api_key, provider_def)
|
40 |
+
elif provider_name in ["gpt-4o", "gpt-4o-mini"]:
|
41 |
+
return LLMFactory._create_gpt_provider(llm_config, api_key, provider_def)
|
42 |
+
else:
|
43 |
+
raise ValueError(f"Unsupported LLM provider: {provider_name}")
|
44 |
+
|
45 |
+
@staticmethod
|
46 |
+
def _create_spark_provider(llm_config, api_key, provider_def):
|
47 |
+
"""Create Spark LLM provider"""
|
48 |
+
endpoint = llm_config.endpoint
|
49 |
+
if not endpoint:
|
50 |
+
raise ValueError("Spark endpoint not configured")
|
51 |
+
|
52 |
+
# Determine variant based on environment
|
53 |
+
is_cloud = bool(os.environ.get("SPACE_ID"))
|
54 |
+
variant = "hfcloud" if is_cloud else "on-premise"
|
55 |
+
|
56 |
+
return SparkLLM(
|
57 |
+
spark_endpoint=endpoint,
|
58 |
+
spark_token=api_key,
|
59 |
+
provider_variant=variant,
|
60 |
+
settings=llm_config.settings
|
61 |
+
)
|
62 |
+
|
63 |
+
@staticmethod
|
64 |
+
def _create_gpt_provider(llm_config, api_key, provider_def):
|
65 |
+
"""Create OpenAI GPT provider"""
|
66 |
+
return OpenAILLM(
|
67 |
+
api_key=api_key,
|
68 |
+
model=llm_config.name,
|
69 |
+
settings=llm_config.settings
|
70 |
+
)
|
71 |
+
|
72 |
+
@staticmethod
|
73 |
+
def _get_api_key(provider_name: str, configured_key: Optional[str]) -> str:
|
74 |
+
"""Get API key from config or environment"""
|
75 |
+
# First try configured key
|
76 |
+
if configured_key:
|
77 |
+
# Handle encrypted keys
|
78 |
+
if configured_key.startswith("enc:"):
|
79 |
+
from encryption_utils import decrypt
|
80 |
+
return decrypt(configured_key)
|
81 |
+
return configured_key
|
82 |
+
|
83 |
+
# Then try environment variables
|
84 |
+
env_mappings = {
|
85 |
+
"spark": "SPARK_TOKEN",
|
86 |
+
"gpt-4o": "OPENAI_API_KEY",
|
87 |
+
"gpt-4o-mini": "OPENAI_API_KEY"
|
88 |
+
}
|
89 |
+
|
90 |
+
env_var = env_mappings.get(provider_name)
|
91 |
+
if env_var:
|
92 |
+
key = os.environ.get(env_var)
|
93 |
+
if key:
|
94 |
+
log_info(f"📌 Using API key from environment: {env_var}")
|
95 |
+
return key
|
96 |
+
|
97 |
+
raise ValueError(f"No API key found for provider: {provider_name}")
|
llm/llm_interface.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
LLM Provider Interface for Flare
|
3 |
+
"""
|
4 |
+
import os
|
5 |
+
from abc import ABC, abstractmethod
|
6 |
+
from typing import Dict, List, Optional, Any
|
7 |
+
|
8 |
+
class LLMInterface(ABC):
|
9 |
+
"""Abstract base class for LLM providers"""
|
10 |
+
|
11 |
+
def __init__(self, settings: Dict[str, Any] = None):
|
12 |
+
"""Initialize with provider settings"""
|
13 |
+
self.settings = settings or {}
|
14 |
+
self.internal_prompt = self.settings.get("internal_prompt", "")
|
15 |
+
self.parameter_collection_config = self.settings.get("parameter_collection_config", {})
|
16 |
+
|
17 |
+
@abstractmethod
|
18 |
+
async def generate(self, system_prompt: str, user_input: str, context: List[Dict]) -> str:
|
19 |
+
"""Generate response from LLM"""
|
20 |
+
pass
|
21 |
+
|
22 |
+
@abstractmethod
|
23 |
+
async def startup(self, project_config: Dict) -> bool:
|
24 |
+
"""Initialize LLM with project config"""
|
25 |
+
pass
|
26 |
+
|
27 |
+
@abstractmethod
|
28 |
+
def get_provider_name(self) -> str:
|
29 |
+
"""Get provider name for logging"""
|
30 |
+
pass
|
31 |
+
|
32 |
+
@abstractmethod
|
33 |
+
def get_model_info(self) -> Dict[str, Any]:
|
34 |
+
"""Get model information"""
|
35 |
+
pass
|
llm/llm_openai.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
OpenAI GPT Implementation
|
3 |
+
"""
|
4 |
+
import os
|
5 |
+
import openai
|
6 |
+
from typing import Dict, List, Any
|
7 |
+
from llm_interface import LLMInterface
|
8 |
+
from logger import log_info, log_error, log_warning, log_debug, LogTimer
|
9 |
+
|
10 |
+
DEFAULT_LLM_TIMEOUT = int(os.getenv("LLM_TIMEOUT_SECONDS", "60"))
|
11 |
+
MAX_RESPONSE_LENGTH = 4096 # Max response length
|
12 |
+
|
13 |
+
class OpenAILLM(LLMInterface):
|
14 |
+
"""OpenAI GPT integration with improved error handling"""
|
15 |
+
|
16 |
+
def __init__(self, api_key: str, model: str = "gpt-4", settings: Dict[str, Any] = None):
|
17 |
+
super().__init__(settings)
|
18 |
+
self.api_key = api_key
|
19 |
+
self.model = model
|
20 |
+
self.timeout = self.settings.get("timeout", DEFAULT_LLM_TIMEOUT)
|
21 |
+
openai.api_key = api_key
|
22 |
+
log_info(f"🔌 OpenAI LLM initialized", model=self.model, timeout=self.timeout)
|
23 |
+
|
24 |
+
async def generate(self, system_prompt: str, user_input: str, context: List[Dict]) -> str:
|
25 |
+
"""Generate response with consistent error handling"""
|
26 |
+
|
27 |
+
# Build messages
|
28 |
+
messages = []
|
29 |
+
if system_prompt:
|
30 |
+
messages.append({"role": "system", "content": system_prompt})
|
31 |
+
|
32 |
+
# Add context
|
33 |
+
for msg in context[-10:]: # Last 10 messages
|
34 |
+
role = "assistant" if msg.get("role") == "assistant" else "user"
|
35 |
+
messages.append({"role": role, "content": msg.get("content", "")})
|
36 |
+
|
37 |
+
# Add current input
|
38 |
+
messages.append({"role": "user", "content": user_input})
|
39 |
+
|
40 |
+
try:
|
41 |
+
with LogTimer(f"OpenAI {self.model} request"):
|
42 |
+
# Use async client
|
43 |
+
client = openai.AsyncOpenAI(
|
44 |
+
api_key=self.api_key,
|
45 |
+
timeout=self.timeout
|
46 |
+
)
|
47 |
+
|
48 |
+
response = await client.chat.completions.create(
|
49 |
+
model=self.model,
|
50 |
+
messages=messages,
|
51 |
+
max_tokens=self.settings.get("max_tokens", 2048),
|
52 |
+
temperature=self.settings.get("temperature", 0.7),
|
53 |
+
stream=False
|
54 |
+
)
|
55 |
+
|
56 |
+
# Extract content
|
57 |
+
content = response.choices[0].message.content
|
58 |
+
|
59 |
+
# Check length
|
60 |
+
if len(content) > MAX_RESPONSE_LENGTH:
|
61 |
+
log_warning(f"Response exceeded max length, truncating",
|
62 |
+
original_length=len(content),
|
63 |
+
max_length=MAX_RESPONSE_LENGTH)
|
64 |
+
content = content[:MAX_RESPONSE_LENGTH] + "..."
|
65 |
+
|
66 |
+
# Log token usage
|
67 |
+
if response.usage:
|
68 |
+
log_info(f"Token usage",
|
69 |
+
prompt_tokens=response.usage.prompt_tokens,
|
70 |
+
completion_tokens=response.usage.completion_tokens,
|
71 |
+
total_tokens=response.usage.total_tokens)
|
72 |
+
|
73 |
+
return content
|
74 |
+
|
75 |
+
except openai.RateLimitError as e:
|
76 |
+
log_warning("OpenAI rate limit", error=str(e))
|
77 |
+
raise
|
78 |
+
except openai.APITimeoutError as e:
|
79 |
+
log_error("OpenAI timeout", error=str(e))
|
80 |
+
raise
|
81 |
+
except openai.APIError as e:
|
82 |
+
log_error("OpenAI API error",
|
83 |
+
status_code=e.status_code if hasattr(e, 'status_code') else None,
|
84 |
+
error=str(e))
|
85 |
+
raise
|
86 |
+
except Exception as e:
|
87 |
+
log_error("OpenAI unexpected error", error=str(e))
|
88 |
+
raise
|
89 |
+
|
90 |
+
async def startup(self, project_config: Dict) -> bool:
|
91 |
+
"""OpenAI doesn't need startup"""
|
92 |
+
log_info("OpenAI startup called (no-op)")
|
93 |
+
return True
|
94 |
+
|
95 |
+
def get_provider_name(self) -> str:
|
96 |
+
return f"openai-{self.model}"
|
97 |
+
|
98 |
+
def get_model_info(self) -> Dict[str, Any]:
|
99 |
+
return {
|
100 |
+
"provider": "openai",
|
101 |
+
"model": self.model,
|
102 |
+
"max_tokens": self.settings.get("max_tokens", 2048),
|
103 |
+
"temperature": self.settings.get("temperature", 0.7)
|
104 |
+
}
|
llm/llm_spark.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Spark LLM Implementation
|
3 |
+
"""
|
4 |
+
import os
|
5 |
+
import httpx
|
6 |
+
import json
|
7 |
+
from typing import Dict, List, Any, AsyncIterator
|
8 |
+
from llm_interface import LLMInterface
|
9 |
+
from logger import log_info, log_error, log_warning, log_debug
|
10 |
+
|
11 |
+
# Get timeout from environment
|
12 |
+
DEFAULT_LLM_TIMEOUT = int(os.getenv("LLM_TIMEOUT_SECONDS", "60"))
|
13 |
+
MAX_RESPONSE_LENGTH = int(os.getenv("LLM_MAX_RESPONSE_LENGTH", "4096"))
|
14 |
+
|
15 |
+
class SparkLLM(LLMInterface):
|
16 |
+
"""Spark LLM integration with improved error handling"""
|
17 |
+
|
18 |
+
def __init__(self, spark_endpoint: str, spark_token: str, provider_variant: str = "cloud", settings: Dict[str, Any] = None):
|
19 |
+
super().__init__(settings)
|
20 |
+
self.spark_endpoint = spark_endpoint.rstrip("/")
|
21 |
+
self.spark_token = spark_token
|
22 |
+
self.provider_variant = provider_variant
|
23 |
+
self.timeout = self.settings.get("timeout", DEFAULT_LLM_TIMEOUT)
|
24 |
+
log_info(f"🔌 SparkLLM initialized", endpoint=self.spark_endpoint, timeout=self.timeout)
|
25 |
+
|
26 |
+
async def generate(self, system_prompt: str, user_input: str, context: List[Dict]) -> str:
|
27 |
+
"""Generate response with improved error handling and streaming support"""
|
28 |
+
headers = {
|
29 |
+
"Authorization": f"Bearer {self.spark_token}",
|
30 |
+
"Content-Type": "application/json"
|
31 |
+
}
|
32 |
+
|
33 |
+
# Build context messages
|
34 |
+
messages = []
|
35 |
+
if system_prompt:
|
36 |
+
messages.append({
|
37 |
+
"role": "system",
|
38 |
+
"content": system_prompt
|
39 |
+
})
|
40 |
+
|
41 |
+
for msg in context[-10:]: # Last 10 messages for context
|
42 |
+
messages.append({
|
43 |
+
"role": msg.get("role", "user"),
|
44 |
+
"content": msg.get("content", "")
|
45 |
+
})
|
46 |
+
|
47 |
+
messages.append({
|
48 |
+
"role": "user",
|
49 |
+
"content": user_input
|
50 |
+
})
|
51 |
+
|
52 |
+
payload = {
|
53 |
+
"messages": messages,
|
54 |
+
"mode": self.provider_variant,
|
55 |
+
"max_tokens": self.settings.get("max_tokens", 2048),
|
56 |
+
"temperature": self.settings.get("temperature", 0.7),
|
57 |
+
"stream": False # For now, no streaming
|
58 |
+
}
|
59 |
+
|
60 |
+
try:
|
61 |
+
async with httpx.AsyncClient(timeout=self.timeout) as client:
|
62 |
+
with LogTimer(f"Spark LLM request"):
|
63 |
+
response = await client.post(
|
64 |
+
f"{self.spark_endpoint}/generate",
|
65 |
+
json=payload,
|
66 |
+
headers=headers
|
67 |
+
)
|
68 |
+
|
69 |
+
# Check for rate limiting
|
70 |
+
if response.status_code == 429:
|
71 |
+
retry_after = response.headers.get("Retry-After", "60")
|
72 |
+
log_warning(f"Rate limited by Spark", retry_after=retry_after)
|
73 |
+
raise httpx.HTTPStatusError(
|
74 |
+
f"Rate limited. Retry after {retry_after}s",
|
75 |
+
request=response.request,
|
76 |
+
response=response
|
77 |
+
)
|
78 |
+
|
79 |
+
response.raise_for_status()
|
80 |
+
result = response.json()
|
81 |
+
|
82 |
+
# Extract response
|
83 |
+
content = result.get("model_answer", "")
|
84 |
+
|
85 |
+
# Check response length
|
86 |
+
if len(content) > MAX_RESPONSE_LENGTH:
|
87 |
+
log_warning(f"Response exceeded max length, truncating",
|
88 |
+
original_length=len(content),
|
89 |
+
max_length=MAX_RESPONSE_LENGTH)
|
90 |
+
content = content[:MAX_RESPONSE_LENGTH] + "..."
|
91 |
+
|
92 |
+
return content
|
93 |
+
|
94 |
+
except httpx.TimeoutException:
|
95 |
+
log_error(f"Spark request timed out", timeout=self.timeout)
|
96 |
+
raise
|
97 |
+
except httpx.HTTPStatusError as e:
|
98 |
+
log_error(f"Spark HTTP error",
|
99 |
+
status_code=e.response.status_code,
|
100 |
+
response=e.response.text[:500])
|
101 |
+
raise
|
102 |
+
except Exception as e:
|
103 |
+
log_error("Spark unexpected error", error=str(e))
|
104 |
+
raise
|
105 |
+
|
106 |
+
def get_provider_name(self) -> str:
|
107 |
+
return f"spark-{self.provider_variant}"
|
108 |
+
|
109 |
+
def get_model_info(self) -> Dict[str, Any]:
|
110 |
+
return {
|
111 |
+
"provider": "spark",
|
112 |
+
"variant": self.provider_variant,
|
113 |
+
"endpoint": self.spark_endpoint,
|
114 |
+
"max_tokens": self.settings.get("max_tokens", 2048),
|
115 |
+
"temperature": self.settings.get("temperature", 0.7)
|
116 |
+
}
|
llm/llm_startup.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Flare – LLM startup notifier (Refactored)
|
3 |
+
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
4 |
+
Projeler açılırken LLM provider'a startup çağrısı yapar.
|
5 |
+
"""
|
6 |
+
|
7 |
+
from __future__ import annotations
|
8 |
+
import threading
|
9 |
+
import asyncio
|
10 |
+
from typing import Dict, Any
|
11 |
+
from logger import log_info, log_error, log_warning, log_debug
|
12 |
+
from config_provider import ConfigProvider, ProjectConfig, VersionConfig
|
13 |
+
from llm_factory import LLMFactory
|
14 |
+
|
15 |
+
def _select_live_version(p: ProjectConfig) -> VersionConfig | None:
|
16 |
+
"""Yayınlanmış en güncel versiyonu getir."""
|
17 |
+
published = [v for v in p.versions if v.published]
|
18 |
+
return max(published, key=lambda v: v.no) if published else None
|
19 |
+
|
20 |
+
async def notify_startup_async():
|
21 |
+
"""Notify LLM provider about project startups (async version)"""
|
22 |
+
cfg = ConfigProvider.get()
|
23 |
+
|
24 |
+
# Check if LLM provider requires repo info
|
25 |
+
llm_provider_def = cfg.global_config.get_provider_config(
|
26 |
+
"llm",
|
27 |
+
cfg.global_config.llm_provider.name
|
28 |
+
)
|
29 |
+
|
30 |
+
if not llm_provider_def or not llm_provider_def.requires_repo_info:
|
31 |
+
log_info(f"ℹ️ LLM provider '{cfg.global_config.llm_provider.name}' does not require startup notification")
|
32 |
+
return
|
33 |
+
|
34 |
+
# Create LLM provider instance
|
35 |
+
try:
|
36 |
+
llm_provider = LLMFactory.create_provider()
|
37 |
+
except Exception as e:
|
38 |
+
log_error("❌ Failed to create LLM provider for startup", e)
|
39 |
+
return
|
40 |
+
|
41 |
+
# Notify for each enabled project
|
42 |
+
enabled_projects = [p for p in cfg.projects if p.enabled and not getattr(p, 'deleted', False)]
|
43 |
+
|
44 |
+
if not enabled_projects:
|
45 |
+
log_info("ℹ️ No enabled projects found for startup notification")
|
46 |
+
return
|
47 |
+
|
48 |
+
for project in enabled_projects:
|
49 |
+
version = _select_live_version(project)
|
50 |
+
if not version:
|
51 |
+
log_info(f"⚠️ No published version found for project '{project.name}', skipping startup")
|
52 |
+
continue
|
53 |
+
|
54 |
+
# Build project config - version.id yerine version.no kullan
|
55 |
+
project_config = {
|
56 |
+
"name": project.name,
|
57 |
+
"version_no": version.no, # version_id yerine version_no
|
58 |
+
"repo_id": version.llm.repo_id,
|
59 |
+
"generation_config": version.llm.generation_config,
|
60 |
+
"use_fine_tune": version.llm.use_fine_tune,
|
61 |
+
"fine_tune_zip": version.llm.fine_tune_zip
|
62 |
+
}
|
63 |
+
|
64 |
+
try:
|
65 |
+
log_info(f"🚀 Notifying LLM provider startup for project '{project.name}'...")
|
66 |
+
success = await llm_provider.startup(project_config)
|
67 |
+
|
68 |
+
if success:
|
69 |
+
log_info(f"✅ LLM provider acknowledged startup for '{project.name}'")
|
70 |
+
else:
|
71 |
+
log_info(f"⚠️ LLM provider startup failed for '{project.name}'")
|
72 |
+
|
73 |
+
except Exception as e:
|
74 |
+
log_error(f"❌ Error during startup notification for '{project.name}'", e)
|
75 |
+
|
76 |
+
def notify_startup():
|
77 |
+
"""Synchronous wrapper for async startup notification"""
|
78 |
+
# Create new event loop for thread
|
79 |
+
loop = asyncio.new_event_loop()
|
80 |
+
asyncio.set_event_loop(loop)
|
81 |
+
|
82 |
+
try:
|
83 |
+
loop.run_until_complete(notify_startup_async())
|
84 |
+
finally:
|
85 |
+
loop.close()
|
86 |
+
|
87 |
+
def run_in_thread():
|
88 |
+
"""Start startup notification in background thread"""
|
89 |
+
cfg = ConfigProvider.get()
|
90 |
+
|
91 |
+
# Check if provider requires startup
|
92 |
+
llm_provider_def = cfg.global_config.get_provider_config(
|
93 |
+
"llm",
|
94 |
+
cfg.global_config.llm_provider.name
|
95 |
+
)
|
96 |
+
|
97 |
+
if not llm_provider_def or not llm_provider_def.requires_repo_info:
|
98 |
+
log_info(f"🤖 {cfg.global_config.llm_provider.name} - Startup notification not required")
|
99 |
+
return
|
100 |
+
|
101 |
+
log_info("🚀 Starting LLM provider startup notification thread...")
|
102 |
+
threading.Thread(target=notify_startup, daemon=True).start()
|