Spaces:
Building
Building
Update llm_factory.py
Browse files- llm_factory.py +41 -40
llm_factory.py
CHANGED
@@ -10,59 +10,58 @@ from config_provider import ConfigProvider
|
|
10 |
from utils import log
|
11 |
|
12 |
class LLMFactory:
|
13 |
-
"""Factory class to create appropriate LLM provider based on
|
14 |
|
15 |
@staticmethod
|
16 |
def create_provider() -> LLMInterface:
|
17 |
"""Create and return appropriate LLM provider based on config"""
|
18 |
cfg = ConfigProvider.get()
|
19 |
-
|
20 |
|
21 |
-
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
27 |
|
28 |
# Get API key
|
29 |
-
api_key = LLMFactory._get_api_key()
|
30 |
-
if not api_key and
|
31 |
-
raise ValueError(f"API key required for {
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
# Create appropriate provider
|
34 |
-
if
|
35 |
-
return LLMFactory._create_spark_provider(api_key)
|
36 |
-
elif
|
37 |
-
return LLMFactory._create_gpt_provider(
|
38 |
else:
|
39 |
-
raise ValueError(f"Unsupported LLM provider: {
|
40 |
|
41 |
@staticmethod
|
42 |
-
def _create_spark_provider(api_key: str) -> SparkLLM:
|
43 |
"""Create Spark LLM provider"""
|
44 |
-
|
45 |
-
|
46 |
-
endpoint = cfg.global_config.llm_provider_endpoint
|
47 |
-
if not endpoint:
|
48 |
-
raise ValueError("Spark requires llm_provider_endpoint to be configured")
|
49 |
-
|
50 |
-
log(f"π Creating SparkLLM provider")
|
51 |
log(f"π Endpoint: {endpoint}")
|
52 |
|
53 |
-
# Determine work mode for Spark (backward compatibility)
|
54 |
-
work_mode = "cloud" # Default
|
55 |
-
if not cfg.global_config.is_cloud_mode():
|
56 |
-
work_mode = "on-premise"
|
57 |
-
|
58 |
return SparkLLM(
|
59 |
-
spark_endpoint=
|
60 |
spark_token=api_key,
|
61 |
-
|
|
|
62 |
)
|
63 |
|
64 |
@staticmethod
|
65 |
-
def _create_gpt_provider(model_type: str, api_key: str) -> GPT4oLLM:
|
66 |
"""Create GPT-4o LLM provider"""
|
67 |
# Determine model
|
68 |
model = "gpt-4o-mini" if model_type == "gpt4o-mini" else "gpt-4o"
|
@@ -71,37 +70,39 @@ class LLMFactory:
|
|
71 |
|
72 |
return GPT4oLLM(
|
73 |
api_key=api_key,
|
74 |
-
model=model
|
|
|
75 |
)
|
76 |
|
77 |
@staticmethod
|
78 |
-
def _get_api_key() -> Optional[str]:
|
79 |
"""Get API key from config or environment"""
|
80 |
cfg = ConfigProvider.get()
|
81 |
|
82 |
# First check encrypted config
|
83 |
-
api_key = cfg.global_config.get_plain_api_key()
|
84 |
if api_key:
|
85 |
log("π Using decrypted API key from config")
|
86 |
return api_key
|
87 |
|
88 |
# Then check environment based on provider
|
89 |
-
llm_provider = cfg.global_config.llm_provider
|
90 |
-
|
91 |
env_var_map = {
|
92 |
"spark": "SPARK_TOKEN",
|
|
|
|
|
93 |
"gpt4o": "OPENAI_API_KEY",
|
94 |
"gpt4o-mini": "OPENAI_API_KEY",
|
95 |
-
# Add more mappings as needed
|
96 |
}
|
97 |
|
98 |
-
env_var = env_var_map.get(
|
99 |
if env_var:
|
100 |
-
if
|
|
|
101 |
api_key = os.environ.get(env_var)
|
102 |
if api_key:
|
103 |
-
log(f"π Using {env_var} from
|
104 |
else:
|
|
|
105 |
load_dotenv()
|
106 |
api_key = os.getenv(env_var)
|
107 |
if api_key:
|
|
|
10 |
from utils import log
|
11 |
|
12 |
class LLMFactory:
|
13 |
+
"""Factory class to create appropriate LLM provider based on configuration"""
|
14 |
|
15 |
@staticmethod
|
16 |
def create_provider() -> LLMInterface:
|
17 |
"""Create and return appropriate LLM provider based on config"""
|
18 |
cfg = ConfigProvider.get()
|
19 |
+
llm_config = cfg.global_config.llm_provider
|
20 |
|
21 |
+
if not llm_config:
|
22 |
+
raise ValueError("No LLM provider configured")
|
23 |
|
24 |
+
provider_name = llm_config.name
|
25 |
+
log(f"π Creating LLM provider: {provider_name}")
|
26 |
+
|
27 |
+
# Get provider definition
|
28 |
+
provider_def = cfg.global_config.get_provider_config("llm", provider_name)
|
29 |
+
if not provider_def:
|
30 |
+
raise ValueError(f"Unknown LLM provider: {provider_name}")
|
31 |
|
32 |
# Get API key
|
33 |
+
api_key = LLMFactory._get_api_key(provider_name)
|
34 |
+
if not api_key and provider_def.requires_api_key:
|
35 |
+
raise ValueError(f"API key required for {provider_name} but not configured")
|
36 |
+
|
37 |
+
# Get endpoint
|
38 |
+
endpoint = llm_config.endpoint
|
39 |
+
if not endpoint and provider_def.requires_endpoint:
|
40 |
+
raise ValueError(f"Endpoint required for {provider_name} but not configured")
|
41 |
|
42 |
# Create appropriate provider
|
43 |
+
if provider_name in ("spark", "spark_cloud", "spark_onpremise"):
|
44 |
+
return LLMFactory._create_spark_provider(provider_name, api_key, endpoint, llm_config.settings)
|
45 |
+
elif provider_name in ("gpt4o", "gpt4o-mini"):
|
46 |
+
return LLMFactory._create_gpt_provider(provider_name, api_key, llm_config.settings)
|
47 |
else:
|
48 |
+
raise ValueError(f"Unsupported LLM provider: {provider_name}")
|
49 |
|
50 |
@staticmethod
|
51 |
+
def _create_spark_provider(provider_name: str, api_key: str, endpoint: str, settings: dict) -> SparkLLM:
|
52 |
"""Create Spark LLM provider"""
|
53 |
+
log(f"π Creating SparkLLM provider: {provider_name}")
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
log(f"π Endpoint: {endpoint}")
|
55 |
|
|
|
|
|
|
|
|
|
|
|
56 |
return SparkLLM(
|
57 |
+
spark_endpoint=endpoint,
|
58 |
spark_token=api_key,
|
59 |
+
provider_variant=provider_name,
|
60 |
+
settings=settings
|
61 |
)
|
62 |
|
63 |
@staticmethod
|
64 |
+
def _create_gpt_provider(model_type: str, api_key: str, settings: dict) -> GPT4oLLM:
|
65 |
"""Create GPT-4o LLM provider"""
|
66 |
# Determine model
|
67 |
model = "gpt-4o-mini" if model_type == "gpt4o-mini" else "gpt-4o"
|
|
|
70 |
|
71 |
return GPT4oLLM(
|
72 |
api_key=api_key,
|
73 |
+
model=model,
|
74 |
+
settings=settings
|
75 |
)
|
76 |
|
77 |
@staticmethod
|
78 |
+
def _get_api_key(provider_name: str) -> Optional[str]:
|
79 |
"""Get API key from config or environment"""
|
80 |
cfg = ConfigProvider.get()
|
81 |
|
82 |
# First check encrypted config
|
83 |
+
api_key = cfg.global_config.get_plain_api_key("llm")
|
84 |
if api_key:
|
85 |
log("π Using decrypted API key from config")
|
86 |
return api_key
|
87 |
|
88 |
# Then check environment based on provider
|
|
|
|
|
89 |
env_var_map = {
|
90 |
"spark": "SPARK_TOKEN",
|
91 |
+
"spark_cloud": "SPARK_TOKEN",
|
92 |
+
"spark_onpremise": "SPARK_TOKEN",
|
93 |
"gpt4o": "OPENAI_API_KEY",
|
94 |
"gpt4o-mini": "OPENAI_API_KEY",
|
|
|
95 |
}
|
96 |
|
97 |
+
env_var = env_var_map.get(provider_name)
|
98 |
if env_var:
|
99 |
+
# Check if running in HuggingFace Space
|
100 |
+
if os.environ.get("SPACE_ID"):
|
101 |
api_key = os.environ.get(env_var)
|
102 |
if api_key:
|
103 |
+
log(f"π Using {env_var} from HuggingFace secrets")
|
104 |
else:
|
105 |
+
# Local/on-premise deployment
|
106 |
load_dotenv()
|
107 |
api_key = os.getenv(env_var)
|
108 |
if api_key:
|