Spaces:
Building
Building
Update intent_utils.py
Browse files- intent_utils.py +0 -110
intent_utils.py
CHANGED
@@ -1,124 +1,14 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
import json
|
4 |
-
import shutil
|
5 |
import re
|
6 |
-
import traceback
|
7 |
-
from datasets import Dataset
|
8 |
-
from transformers import (
|
9 |
-
AutoTokenizer,
|
10 |
-
AutoModelForSequenceClassification,
|
11 |
-
Trainer,
|
12 |
-
TrainingArguments,
|
13 |
-
default_data_collator,
|
14 |
-
AutoConfig,
|
15 |
-
)
|
16 |
-
from log import log
|
17 |
-
from core import llm_models
|
18 |
-
|
19 |
-
async def detect_intent(text, project_name):
|
20 |
-
llm_model_instance = llm_models.get(project_name)
|
21 |
-
if not llm_model_instance or not llm_model_instance.intent_model:
|
22 |
-
raise Exception(f"'{project_name}' için intent modeli yüklenmemiş.")
|
23 |
-
|
24 |
-
tokenizer = llm_model_instance.intent_tokenizer
|
25 |
-
model = llm_model_instance.intent_model
|
26 |
-
label2id = llm_model_instance.intent_label2id
|
27 |
-
|
28 |
-
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
29 |
-
outputs = model(**inputs)
|
30 |
-
predicted_id = outputs.logits.argmax(dim=-1).item()
|
31 |
-
|
32 |
-
detected_intent = [k for k, v in label2id.items() if v == predicted_id][0]
|
33 |
-
confidence = outputs.logits.softmax(dim=-1).max().item()
|
34 |
-
|
35 |
-
return detected_intent, confidence
|
36 |
-
|
37 |
-
def background_training(project_name, intents, model_id, output_path, confidence_threshold):
|
38 |
-
try:
|
39 |
-
log(f"🔧 Intent eğitimi başlatıldı (proje: {project_name})")
|
40 |
-
texts, labels, label2id = [], [], {}
|
41 |
-
for idx, intent in enumerate(intents):
|
42 |
-
label2id[intent["name"]] = idx
|
43 |
-
for ex in intent["examples"]:
|
44 |
-
texts.append(ex)
|
45 |
-
labels.append(idx)
|
46 |
-
|
47 |
-
dataset = Dataset.from_dict({"text": texts, "label": labels})
|
48 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
49 |
-
config = AutoConfig.from_pretrained(model_id)
|
50 |
-
config.problem_type = "single_label_classification"
|
51 |
-
config.num_labels = len(label2id)
|
52 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_id, config=config)
|
53 |
-
|
54 |
-
tokenized_data = {"input_ids": [], "attention_mask": [], "label": []}
|
55 |
-
for row in dataset:
|
56 |
-
out = tokenizer(row["text"], truncation=True, padding="max_length", max_length=128)
|
57 |
-
tokenized_data["input_ids"].append(out["input_ids"])
|
58 |
-
tokenized_data["attention_mask"].append(out["attention_mask"])
|
59 |
-
tokenized_data["label"].append(row["label"])
|
60 |
-
|
61 |
-
tokenized = Dataset.from_dict(tokenized_data)
|
62 |
-
tokenized.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])
|
63 |
-
|
64 |
-
if os.path.exists(output_path):
|
65 |
-
shutil.rmtree(output_path)
|
66 |
-
os.makedirs(output_path, exist_ok=True)
|
67 |
-
|
68 |
-
trainer = Trainer(
|
69 |
-
model=model,
|
70 |
-
args=TrainingArguments(output_path, per_device_train_batch_size=4, num_train_epochs=3, logging_steps=10, save_strategy="no", report_to=[]),
|
71 |
-
train_dataset=tokenized,
|
72 |
-
data_collator=default_data_collator,
|
73 |
-
)
|
74 |
-
trainer.train()
|
75 |
-
|
76 |
-
log("🔧 Başarı raporu üretiliyor...")
|
77 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
78 |
-
model.to(device)
|
79 |
-
input_ids_tensor = torch.tensor(tokenized["input_ids"]).to(device)
|
80 |
-
attention_mask_tensor = torch.tensor(tokenized["attention_mask"]).to(device)
|
81 |
-
|
82 |
-
with torch.no_grad():
|
83 |
-
outputs = model(input_ids=input_ids_tensor, attention_mask=attention_mask_tensor)
|
84 |
-
predictions = outputs.logits.argmax(dim=-1).tolist()
|
85 |
-
|
86 |
-
actuals = tokenized["label"]
|
87 |
-
counts, correct = {}, {}
|
88 |
-
for pred, actual in zip(predictions, actuals):
|
89 |
-
intent_name = list(label2id.keys())[list(label2id.values()).index(actual)]
|
90 |
-
counts[intent_name] = counts.get(intent_name, 0) + 1
|
91 |
-
if pred == actual:
|
92 |
-
correct[intent_name] = correct.get(intent_name, 0) + 1
|
93 |
-
for intent_name, total in counts.items():
|
94 |
-
accuracy = correct.get(intent_name, 0) / total
|
95 |
-
log(f"📊 Intent '{intent_name}' doğruluk: {accuracy:.2f} — {total} örnek")
|
96 |
-
if accuracy < confidence_threshold or total < 5:
|
97 |
-
log(f"⚠️ Yetersiz performanslı intent: '{intent_name}' — Doğruluk: {accuracy:.2f}, Örnek: {total}")
|
98 |
-
|
99 |
-
# Eğitim sonrası model ve tokenizer'ı diske kaydet
|
100 |
-
model.save_pretrained(output_path)
|
101 |
-
tokenizer.save_pretrained(output_path)
|
102 |
-
with open(os.path.join(output_path, "label2id.json"), "w") as f:
|
103 |
-
json.dump(label2id, f)
|
104 |
-
|
105 |
-
log(f"✅ Intent eğitimi tamamlandı ve '{project_name}' için model disk üzerinde hazır.")
|
106 |
-
|
107 |
-
except Exception as e:
|
108 |
-
log(f"❌ Intent eğitimi hatası: {e}")
|
109 |
-
traceback.print_exc()
|
110 |
|
111 |
def extract_parameters(variables_list, user_input):
|
112 |
extracted_params = []
|
113 |
for pattern in variables_list:
|
114 |
-
# Örneğin: from_location:{Ankara} to_location:{İstanbul}
|
115 |
regex = re.sub(r"(\w+):\{(.+?)\}", r"(?P<\1>.+?)", pattern)
|
116 |
match = re.match(regex, user_input)
|
117 |
if match:
|
118 |
extracted_params = [{"key": k, "value": v} for k, v in match.groupdict().items()]
|
119 |
break
|
120 |
|
121 |
-
# Ek özel basit yakalama: iki şehir birden yazılırsa → sırayla atama
|
122 |
if not extracted_params:
|
123 |
city_pattern = r"(\bAnkara\b|\bİstanbul\b|\bİzmir\b)"
|
124 |
cities = re.findall(city_pattern, user_input)
|
|
|
|
|
|
|
|
|
|
|
1 |
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
def extract_parameters(variables_list, user_input):
|
4 |
extracted_params = []
|
5 |
for pattern in variables_list:
|
|
|
6 |
regex = re.sub(r"(\w+):\{(.+?)\}", r"(?P<\1>.+?)", pattern)
|
7 |
match = re.match(regex, user_input)
|
8 |
if match:
|
9 |
extracted_params = [{"key": k, "value": v} for k, v in match.groupdict().items()]
|
10 |
break
|
11 |
|
|
|
12 |
if not extracted_params:
|
13 |
city_pattern = r"(\bAnkara\b|\bİstanbul\b|\bİzmir\b)"
|
14 |
cities = re.findall(city_pattern, user_input)
|