""" Flare – Chat Handler (v1.7 · parameter parsing düzeltmesi) ========================================== """ import os import re, json, sys, httpx from datetime import datetime from typing import Dict, List, Optional from fastapi import APIRouter, HTTPException, Header from pydantic import BaseModel import requests from prompt_builder import build_intent_prompt, build_parameter_prompt, build_smart_parameter_question_prompt, extract_params_from_question from utils import log from api_executor import call_api as execute_api from validation_engine import validate from session import session_store, Session from llm_interface import LLMInterface, SparkLLM, GPT4oLLM # ───────────────────────── CONFIG ───────────────────────── # # Lazy loading for config _cfg = None def get_config(): """Get or reload config""" global _cfg if _cfg is None: from config_provider import ConfigProvider _cfg = ConfigProvider.get() return _cfg def reload_config(): """Force reload config""" global _cfg from config_provider import ConfigProvider ConfigProvider._instance = None _cfg = ConfigProvider.get() return _cfg # Global LLM instance llm_provider: Optional[LLMInterface] = None # ───────────────────────── HELPERS ───────────────────────── # def _trim_response(raw: str) -> str: """ Remove everything after the first logical assistant block or intent tag. Also strips trailing 'assistant' artifacts and prompt injections. """ # Stop at our own rules if model leaked them for stop in ["#DETECTED_INTENT", "⚠️", "\nassistant", "assistant\n", "assistant"]: idx = raw.find(stop) if idx != -1: raw = raw[:idx] # Normalise selamlama raw = re.sub(r"Hoş[\s-]?geldin(iz)?", "Hoş geldiniz", raw, flags=re.IGNORECASE) return raw.strip() def _safe_intent_parse(raw: str) -> tuple[str, str]: """Extract intent name and extra tail.""" m = re.search(r"#DETECTED_INTENT:\s*([A-Za-z0-9_-]+)", raw) if not m: return "", raw name = m.group(1) # Remove 'assistant' suffix if exists if name.endswith("assistant"): name = name[:-9] # Remove last 9 chars ("assistant") log(f"🔧 Removed 'assistant' suffix from intent name") tail = raw[m.end():] log(f"🎯 Parsed intent: {name}") return name, tail # ───────────────────────── SPARK ───────────────────────── # def initialize_llm(force_reload=False): """Initialize LLM provider based on work_mode""" global llm_provider # Get fresh config if forced or first time if force_reload: cfg = reload_config() else: cfg = get_config() work_mode = cfg.global_config.work_mode if cfg.global_config.is_gpt_mode(): # GPT mode api_key = cfg.global_config.get_plain_token() if not api_key: raise ValueError("OpenAI API key not configured") model = cfg.global_config.get_gpt_model() llm_provider = GPT4oLLM(api_key, model) log(f"✅ Initialized {model} provider") else: # Spark mode spark_token = _get_spark_token() if not spark_token: raise ValueError("Spark token not configured") spark_endpoint = str(cfg.global_config.spark_endpoint) llm_provider = SparkLLM(spark_endpoint, spark_token) log("✅ Initialized Spark provider") # ───────────────────────── SPARK ───────────────────────── # def _get_spark_token() -> Optional[str]: """Get Spark token based on work_mode""" cfg = get_config() work_mode = cfg.global_config.work_mode if work_mode in ("hfcloud", "cloud"): # Cloud mode - use HuggingFace Secrets token = os.getenv("SPARK_TOKEN") if not token: log("❌ SPARK_TOKEN not found in HuggingFace Secrets!") return token else: # On-premise mode - use .env file from dotenv import load_dotenv load_dotenv() return os.getenv("SPARK_TOKEN") async def spark_generate(s: Session, prompt: str, user_msg: str) -> str: """Call LLM provider with proper error handling""" try: # Always reinitialize to get fresh config initialize_llm(force_reload=True) if not llm_provider: raise ValueError("Failed to initialize LLM provider") # Use the abstract interface raw = await llm_provider.generate(prompt, user_msg, s.chat_history) log(f"🪄 LLM raw response: {raw[:120]!r}") return raw except Exception as e: log(f"❌ LLM error: {e}") raise # ───────────────────────── FASTAPI ───────────────────────── # router = APIRouter() @router.get("/health") def health_check(): """Health check endpoint for monitoring""" return { "status": "ok", "sessions": len(session_store._sessions), "timestamp": datetime.now().isoformat() } class StartRequest(BaseModel): project_name: str class ChatRequest(BaseModel): user_input: str class ChatResponse(BaseModel): session_id: str answer: str @router.post("/start_session", response_model=ChatResponse) async def start_session(req: StartRequest): """Create new session""" try: cfg = get_config() # Validate project exists project = next((p for p in cfg.projects if p.name == req.project_name and p.enabled), None) if not project: raise HTTPException(404, f"Project '{req.project_name}' not found or disabled") # Create session session = session_store.create_session(req.project_name) greeting = "Hoş geldiniz! Size nasıl yardımcı olabilirim?" session.add_turn("assistant", greeting) return ChatResponse(session_id=session.session_id, answer=greeting) except Exception as e: log(f"❌ Error creating session: {e}") raise HTTPException(500, str(e)) @router.post("/chat", response_model=ChatResponse) async def chat(body: ChatRequest, x_session_id: str = Header(...)): """Process chat message""" try: # Get session session = session_store.get_session(x_session_id) if not session: raise HTTPException(404, "Session not found") user_input = body.user_input.strip() if not user_input: raise HTTPException(400, "Empty message") log(f"💬 User input: {user_input}") log(f"📊 Session state: {session.state}, last_intent: {session.last_intent}") log(f"📊 Session version: {session.version_number}") session.add_turn("user", user_input) # Get version config from session version = session.get_version_config() if not version: raise HTTPException(500, "Version configuration lost") # Handle based on state if session.state == "await_param": log(f"🔄 Handling parameter followup for missing: {session.awaiting_parameters}") answer = await _handle_parameter_followup(session, user_input) # version parametresi kaldırıldı else: log("🆕 Handling new message") answer = await _handle_new_message(session, user_input) # version parametresi kaldırıldı session.add_turn("assistant", answer) return ChatResponse(session_id=session.session_id, answer=answer) except HTTPException: raise except Exception as e: log(f"❌ Chat error: {e}") session.reset_flow() error_msg = "Bir hata oluştu. Lütfen tekrar deneyin." session.add_turn("assistant", error_msg) return ChatResponse(session_id=x_session_id, answer=error_msg) # ───────────────────────── MESSAGE HANDLERS ───────────────────────── # async def _handle_new_message(session: Session, user_input: str) -> str: """Handle new message (not parameter followup)""" # Get version config from session version = session.get_version_config() if not version: log("❌ Version config not found") return "Bir hata oluştu. Lütfen tekrar deneyin." # Build intent detection prompt prompt = build_intent_prompt( version.general_prompt, session.chat_history, user_input, version.intents, session.project_name ) # Get LLM response raw = await spark_generate(session, prompt, user_input) # Empty response fallback if not raw: log("⚠️ Empty response from LLM") return "Üzgünüm, mesajınızı anlayamadım. Lütfen tekrar dener misiniz?" # Check for intent if not raw.startswith("#DETECTED_INTENT"): # Small talk response log("💬 No intent detected, returning small talk") return _trim_response(raw) # Parse intent intent_name, tail = _safe_intent_parse(raw) # Validate intent against version's intents valid_intents = {intent.name for intent in version.intents} if intent_name not in valid_intents: log(f"⚠️ Invalid intent: {intent_name} (valid: {valid_intents})") return _trim_response(tail) if tail else "Size nasıl yardımcı olabilirim?" # Short message guard (less than 3 words usually means incomplete request) if len(user_input.split()) < 3 and intent_name != "flight-info": log(f"⚠️ Message too short ({len(user_input.split())} words) for intent {intent_name}") return _trim_response(tail) if tail else "Lütfen talebinizi biraz daha detaylandırır mısınız?" # Find intent config intent_config = next((i for i in version.intents if i.name == intent_name), None) if not intent_config: log(f"❌ Intent config not found for: {intent_name}") return "Üzgünüm, bu işlemi gerçekleştiremiyorum." # Set intent in session session.last_intent = intent_name log(f"✅ Intent set: {intent_name}") # Log intent parameters log(f"📋 Intent parameters: {[p.name for p in intent_config.parameters]}") # Extract parameters return await _extract_parameters(session, intent_config, user_input) async def _handle_parameter_followup(session: Session, user_input: str, version) -> str: """Handle parameter collection followup with smart question generation""" if not session.last_intent: log("⚠️ No last intent in session") session.reset_flow() return "Üzgünüm, hangi işlem için bilgi istediğimi unuttum. Baştan başlayalım." # Get intent config intent_config = next((i for i in version.intents if i.name == session.last_intent), None) if not intent_config: log(f"❌ Intent config not found for: {session.last_intent}") session.reset_flow() return "Bir hata oluştu. Lütfen tekrar deneyin." # Try to extract missing parameters missing = session.awaiting_parameters log(f"🔍 Trying to extract missing params: {missing}") prompt = build_parameter_prompt(intent_config, missing, user_input, session.chat_history) raw = await spark_generate(session, prompt, user_input) # Try parsing with or without #PARAMETERS: prefix success = _process_parameters(session, intent_config, raw) # Hangi parametreler hala eksik? still_missing = _get_missing_parameters(session, intent_config) # Sorulan ama cevaplanmayan parametreleri belirle asked_but_not_answered = [] for param in session.awaiting_parameters: if param in still_missing: asked_but_not_answered.append(param) # Cevaplanmayanları session'a kaydet if asked_but_not_answered: session.mark_parameters_unanswered(asked_but_not_answered) log(f"❓ Parameters not answered: {asked_but_not_answered}") # Cevaplananları işaretle for param in session.awaiting_parameters: if param not in still_missing: session.mark_parameter_answered(param) log(f"✅ Parameter answered: {param}") if still_missing: # Maksimum deneme kontrolü if session.missing_ask_count >= 3: session.reset_flow() return "Üzgünüm, istediğiniz bilgileri anlayamadım. Başka bir konuda yardımcı olabilir miyim?" session.missing_ask_count += 1 # Akıllı soru üret question = await _generate_smart_parameter_question( session, intent_config, still_missing, version ) # Sorulan parametreleri tahmin et ve kaydet params_in_question = extract_params_from_question(question, still_missing, intent_config) session.record_parameter_question(params_in_question) session.awaiting_parameters = params_in_question log(f"🤖 Smart question generated for params: {params_in_question}") return question # All parameters collected, call API log("✅ All parameters collected, calling API") session.state = "call_api" return await _execute_api_call(session, intent_config) # ───────────────────────── PARAMETER HANDLING ───────────────────────── # async def _extract_parameters(session: Session, intent_config, user_input: str) -> str: """Extract parameters from user input with smart question generation""" # Yeni intent için parametre takibini sıfırla if session.parameter_ask_rounds == 0: session.reset_parameter_tracking() missing = _get_missing_parameters(session, intent_config) log(f"🔍 Missing parameters: {missing}") if not missing: # All parameters already available log("✅ All parameters already available") return await _execute_api_call(session, intent_config) # Build parameter extraction prompt prompt = build_parameter_prompt(intent_config, missing, user_input, session.chat_history) raw = await spark_generate(session, prompt, user_input) # Try processing with flexible parsing success = _process_parameters(session, intent_config, raw) if success: missing = _get_missing_parameters(session, intent_config) log(f"📊 After extraction, missing: {missing}") else: log("⚠️ Failed to extract parameters from response") if missing: # Still missing parameters - generate smart question session.state = "await_param" session.missing_ask_count = 0 # Akıllı soru üret question = await _generate_smart_parameter_question( session, intent_config, missing, version ) # Sorulan parametreleri tahmin et ve kaydet params_in_question = extract_params_from_question(question, missing, intent_config) session.record_parameter_question(params_in_question) session.awaiting_parameters = params_in_question log(f"🤖 Smart question generated for initial params: {params_in_question}") return question # All parameters collected log("✅ All parameters collected after extraction") return await _execute_api_call(session, intent_config) async def _generate_smart_parameter_question( session: Session, intent_config, missing_params: List[str], version ) -> str: """LLM kullanarak doğal parametre sorusu üret""" # Config'i al collection_config = cfg.global_config.parameter_collection_config # Öncelik sıralaması: önce cevaplanmayanlar prioritized_params = [] # 1. Daha önce sorulup cevaplanmayanlar for param in session.unanswered_parameters: if param in missing_params: prioritized_params.append(param) log(f"🔝 Priority param (unanswered): {param}") # 2. Hiç sorulmamışlar for param in missing_params: if param not in prioritized_params: prioritized_params.append(param) log(f"➕ Additional param (not asked): {param}") # Maksimum parametre sayısını belirle max_params = min( len(prioritized_params), collection_config.max_params_per_question ) params_to_ask = prioritized_params[:max_params] log(f"📋 Params to ask in this round: {params_to_ask}") # Proje dilini belirle project_language = "Turkish" # Default if hasattr(version, 'project') and hasattr(version.project, 'default_language'): lang_map = { "tr": "Turkish", "en": "English", "de": "German", "fr": "French", "es": "Spanish" } project_language = lang_map.get(version.project.default_language, "Turkish") # Prompt oluştur prompt = build_smart_parameter_question_prompt( collection_config, intent_config, params_to_ask, # Sadece bu turda sorulacak parametreler session, project_language ) # LLM'den soru üret response = await spark_generate(session, prompt, "") # Güvenlik: Eğer LLM boş veya hatalı response verirse fallback if not response or len(response.strip()) < 10: log("⚠️ Empty or invalid response from LLM, using fallback") # En yüksek öncelikli parametre için fallback soru param = params_to_ask[0] param_config = next(p for p in intent_config.parameters if p.name == param) # Parametrenin kaç kez sorulduğuna göre farklı fallback ask_count = session.get_parameter_ask_count(param) if ask_count == 0: return f"{param_config.caption} bilgisini alabilir miyim?" elif ask_count == 1: return f"Lütfen {param_config.caption.lower()} bilgisini paylaşır mısınız?" else: return f"Devam edebilmem için {param_config.caption.lower()} bilgisine ihtiyacım var." # Response'u temizle clean_response = response.strip() # Eğer response yanlışlıkla başka şeyler içeriyorsa temizle if "#" in clean_response or "assistant:" in clean_response.lower(): # İlk satırı al clean_response = clean_response.split('\n')[0].strip() log(f"💬 Generated smart question: {clean_response[:100]}...") return clean_response def _get_missing_parameters(session: Session, intent_config) -> List[str]: """Get list of missing required parameters""" missing = [ p.name for p in intent_config.parameters if p.required and p.variable_name not in session.variables ] log(f"📊 Session variables: {list(session.variables.keys())}") return missing def _process_parameters(session: Session, intent_config, raw: str) -> bool: """Process parameter extraction response with flexible parsing""" try: # Try to parse JSON, handling both with and without #PARAMETERS: prefix json_str = raw if raw.startswith("#PARAMETERS:"): json_str = raw[len("#PARAMETERS:"):] log(f"🔍 Found #PARAMETERS: prefix, removing it") # Clean up any trailing content after JSON # Find the closing brace for the JSON object brace_count = 0 json_end = -1 in_string = False escape_next = False for i, char in enumerate(json_str): if escape_next: escape_next = False continue if char == '\\': escape_next = True continue if char == '"' and not escape_next: in_string = not in_string continue if not in_string: if char == '{': brace_count += 1 elif char == '}': brace_count -= 1 if brace_count == 0: json_end = i + 1 break if json_end > 0: json_str = json_str[:json_end] log(f"🔍 Cleaned JSON string: {json_str[:200]}") data = json.loads(json_str) extracted = data.get("extracted", []) log(f"📦 Extracted data: {extracted}") any_valid = False for param_data in extracted: param_name = param_data.get("name") param_value = param_data.get("value") if not param_name or not param_value: log(f"⚠️ Invalid param data: {param_data}") continue # Find parameter config param_config = next( (p for p in intent_config.parameters if p.name == param_name), None ) if not param_config: log(f"⚠️ Parameter config not found for: {param_name}") continue # Date tipi için özel kontrol if param_config.type == "date": try: # ISO format kontrolü from datetime import datetime datetime.strptime(str(param_value), "%Y-%m-%d") except ValueError: log(f"❌ Invalid date format for {param_name}: {param_value}") continue # Validate parameter if validate(str(param_value), param_config): session.variables[param_config.variable_name] = str(param_value) any_valid = True log(f"✅ Extracted {param_name}={param_value} → {param_config.variable_name}") else: log(f"❌ Invalid {param_name}={param_value}") return any_valid except json.JSONDecodeError as e: log(f"❌ JSON parsing error: {e}") log(f"❌ Failed to parse: {raw[:200]}") # Fallback: Try to extract simple values from user input # This is especially useful for single parameter responses if session.state == "await_param" and len(session.awaiting_parameters) > 0: # Get the first missing parameter first_missing = session.awaiting_parameters[0] param_config = next( (p for p in intent_config.parameters if p.name == first_missing), None ) if param_config and session.chat_history: # Get the last user input last_user_input = session.chat_history[-1].get("content", "").strip() # For simple inputs like city names, try direct assignment if param_config.type in ["str", "string"] and len(last_user_input.split()) <= 3: if validate(last_user_input, param_config): session.variables[param_config.variable_name] = last_user_input log(f"✅ Fallback extraction: {first_missing}={last_user_input}") return True return False except Exception as e: log(f"❌ Parameter processing error: {e}") return False # ───────────────────────── API EXECUTION ───────────────────────── # async def _execute_api_call(session: Session, intent_config) -> str: """Execute API call and return humanized response""" try: session.state = "call_api" api_name = intent_config.action cfg = get_config() api_config = cfg.get_api(api_name) if not api_config: log(f"❌ API config not found: {api_name}") session.reset_flow() return intent_config.fallback_error_prompt or "İşlem başarısız oldu." log(f"📡 Calling API: {api_name}") log(f"📦 API variables: {session.variables}") # Execute API call with session response = execute_api(api_config, session) api_json = response.json() log(f"✅ API response: {api_json}") # Humanize response session.state = "humanize" if api_config.response_prompt: prompt = api_config.response_prompt.replace( "{{api_response}}", json.dumps(api_json, ensure_ascii=False) ) human_response = await spark_generate(session, prompt, json.dumps(api_json)) # Trim response to remove any trailing "assistant" artifacts trimmed_response = _trim_response(human_response) session.reset_flow() return trimmed_response if trimmed_response else f"İşlem sonucu: {api_json}" else: session.reset_flow() return f"İşlem tamamlandı: {api_json}" except requests.exceptions.Timeout: log(f"⏱️ API timeout: {api_name}") session.reset_flow() return intent_config.fallback_timeout_prompt or "İşlem zaman aşımına uğradı." except Exception as e: log(f"❌ API call error: {e}") session.reset_flow() return intent_config.fallback_error_prompt or "İşlem sırasında bir hata oluştu."