import gradio as gr import pandas as pd from joblib import load def predict_bodymass(FlipperLength): model = load("penguin_predictor.jb") # Create DataFrame from input data = { "FlipperLength": [FlipperLength] } xin = pd.DataFrame(data) bodymass = model.predict(xin) return bodymass[0] iface = gr.Interface( fn=predict_bodymass, inputs=[ gr.inputs.Textbox(placeholder="Enter Flipper Length(mm)",numeric=True,label="FLIPPER LENGTH") ], title="PENGUIN REGRESSION", outputs="text", examples=[[195], [183]] ) if __name__ == "__main__": iface.launch()