Spaces:
Runtime error
Runtime error
udayg01
commited on
Commit
·
260a7c3
1
Parent(s):
fd88aab
add app
Browse files- app.py +131 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Mockinterview-Falcon.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1hCKPV5U_bg7QQXPUIwwDvCdB1N8fgz0z
|
8 |
+
|
9 |
+
## Install dependencies
|
10 |
+
"""
|
11 |
+
|
12 |
+
|
13 |
+
"""## Import dependencies"""
|
14 |
+
|
15 |
+
import os
|
16 |
+
import torch
|
17 |
+
from transformers import (
|
18 |
+
AutoModelForCausalLM,
|
19 |
+
AutoTokenizer,
|
20 |
+
BitsAndBytesConfig,
|
21 |
+
pipeline
|
22 |
+
)
|
23 |
+
|
24 |
+
import csv
|
25 |
+
import codecs
|
26 |
+
|
27 |
+
from langchain import PromptTemplate, LLMChain
|
28 |
+
import random
|
29 |
+
import json
|
30 |
+
|
31 |
+
"""## Creating pipeline for Falcon-7b"""
|
32 |
+
|
33 |
+
from langchain import HuggingFacePipeline
|
34 |
+
from transformers import AutoTokenizer, pipeline
|
35 |
+
import torch
|
36 |
+
|
37 |
+
model = "tiiuae/falcon-7b-instruct" #tiiuae/falcon-40b-instruct
|
38 |
+
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
40 |
+
|
41 |
+
pipeline = pipeline(
|
42 |
+
"text-generation", #task
|
43 |
+
model=model,
|
44 |
+
tokenizer=tokenizer,
|
45 |
+
torch_dtype=torch.bfloat16,
|
46 |
+
trust_remote_code=True,
|
47 |
+
device_map="auto",
|
48 |
+
max_length=512,
|
49 |
+
do_sample=True,
|
50 |
+
top_k=10,
|
51 |
+
num_return_sequences=1,
|
52 |
+
eos_token_id=tokenizer.eos_token_id
|
53 |
+
)
|
54 |
+
|
55 |
+
llm = HuggingFacePipeline(pipeline = pipeline, model_kwargs = {'temperature':0})
|
56 |
+
|
57 |
+
"""## Loading csv (attempting the program without RAG)
|
58 |
+
|
59 |
+
* RAG was reducing program efficiency.
|
60 |
+
"""
|
61 |
+
|
62 |
+
file = "/content/Combined_Data_set.csv"
|
63 |
+
|
64 |
+
fields = []
|
65 |
+
rows = []
|
66 |
+
|
67 |
+
with codecs.open(file, 'r', 'utf-8') as csvfile:
|
68 |
+
csvreader = csv.reader(csvfile)
|
69 |
+
fields = next(csvreader)
|
70 |
+
|
71 |
+
for row in csvreader:
|
72 |
+
rows.append(row)
|
73 |
+
|
74 |
+
"""## LLMChain for deciding next question"""
|
75 |
+
|
76 |
+
# Here we can make certain changes through the prompt template, like the tone in which we want the questions to be asked, we may use few shots for that.
|
77 |
+
|
78 |
+
record = random.randint(0,len(rows))
|
79 |
+
|
80 |
+
def get_question():
|
81 |
+
topic = rows[record][0] #extracting question from csv
|
82 |
+
|
83 |
+
template1 = """
|
84 |
+
You are a data science interviewer between an interview, ask a question regarding the following given topic:
|
85 |
+
Topic to ask question on as a interviewer: {question}
|
86 |
+
"""
|
87 |
+
prompt1 = PromptTemplate(template=template1, input_variables=["question"])
|
88 |
+
|
89 |
+
llm_chain = LLMChain(prompt=prompt1, llm=llm)
|
90 |
+
|
91 |
+
next_question = llm_chain.run(topic)
|
92 |
+
# print(next_question)
|
93 |
+
json_string = "{{\"question\": \"{}\"}}".format(next_question)
|
94 |
+
|
95 |
+
json_ques = json.loads(json_string, strict=False)
|
96 |
+
|
97 |
+
return json_ques
|
98 |
+
|
99 |
+
result = get_question()
|
100 |
+
result
|
101 |
+
|
102 |
+
result['question']
|
103 |
+
|
104 |
+
"""## LLMChain for evaluating user response"""
|
105 |
+
|
106 |
+
# Now we can improve performance through the prompt, like we can provide a few shots, tell it about how to give positive and negative responses using some shots.
|
107 |
+
|
108 |
+
# corr_ans = rows[record][1] #extracting answer from csv
|
109 |
+
|
110 |
+
def get_evaluation(response):
|
111 |
+
template2 = '''
|
112 |
+
You are a data scientist interviewer and you are taking the interview of someone.
|
113 |
+
Evaluate the response given by that person: {response}
|
114 |
+
|
115 |
+
'''
|
116 |
+
prompt2 = PromptTemplate(template=template2, input_variables=["response"])
|
117 |
+
|
118 |
+
llm_chain2 = LLMChain(prompt=prompt2, llm=llm)
|
119 |
+
|
120 |
+
evaluation = llm_chain2.run(response)
|
121 |
+
#print(evaluation)
|
122 |
+
json_string = "{{\"response\" : \"{}\" }}".format(evaluation)
|
123 |
+
|
124 |
+
json_eval = json.loads(json_string, strict=False)
|
125 |
+
return json_eval
|
126 |
+
|
127 |
+
response = input("Enter your response: ")
|
128 |
+
result = get_evaluation(response)
|
129 |
+
result
|
130 |
+
|
131 |
+
result['response']
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
einops
|
3 |
+
accelerate
|
4 |
+
langchain
|
5 |
+
bitsandbytes
|
6 |
+
uvicorn
|